Spelling suggestions: "subject:"blue phase"" "subject:"flue phase""
11 |
Study of Tunability and Stability of Blue Phase Liquid Crystals and its ApplicationsWang, Chun-Ta 04 September 2012 (has links)
Blue phases have been known to exist in chiral liquid crystals between the cholesteric and isotropic phases. A blue phase as a self-assembled three-dimensional cubic structure with lattice periods of several hundred nanometers exhibits not only selective Bragg reflections of light in the visible wavelength but optically isotropy owning to its highly symmetric molecular structure. Locally, blue phases still exhibit local anisotropic physical properties because of anisotropic structure of the nematic liquid crystal molecules, which make it possible to be easily controlled by an external field. This dissertation studies the effects in blue phases under various external fields, including electrical field, optical field, and temperature.
Firstly, we investigated the bistable effect under the influence of an electric field and transition mechanism between various lattice orientations in the negative liquid crystal blue phase. The blue phase exists over a wide temperature range ~16oC, and three lattices (110), (112) and (200) of BPI are confirmed with Kossel diagrams. The red platelet (110) lattice and blue platelet (200) lattice can be stabilized and switched to each other by particular pulse voltages. We also studied the behavior that an electric field induced planar state and electro-hydrodynamatic effect in the blue phase. Additionally, the reflected color of the (200) lattice can be adjusted from 455nm to 545 nm by temperature induced lattice distortions and provided with reversibility.
Secondly, we presented an optically switchable band gap of a 3D photonic crystal that is based on an azobenzene-doped liquid crystal blue phase. Two kinds of azobenzene, M12C and 4MAB, were utilized to switch photonic band gap of blue phases and to change the phase transition temperature of blue phase, respectively. For M12C- doped liquid crystal blue phase, the trans-cis photoisomerization of M12C induced by irradiation using 473nm light caused the deformation of the cubic unit cell of the blue phase and a shift in the photonic band gap. The fast back-isomerization of azobenzene was induced by irradiation with 532nm light. The crystalline structure was verified using a Kossel diffraction diagram. Moreover, we also demonstrated an optically addressable blue phase display, based on Bragg reflection from the photonic band gap. For 4MAB- doped liquid crystal blue phase, the trans-cis photoisomerization of 4MAB destabilizes cubic unit cell of the blue phase and reduces the phase transition temperature. We observed the phase sequences of the 4MAB-doped blue phase as a function of the time of UV irradiation. Various distinct phases can be switched to another specific phase by controlling irradiated time and temperature of the sample. Therefore, the corresponding bandgap can be switched on and off between blue phase and isotropic phase, or varied from 3D to 1D between blue phase and cholesteric phase.
Finally, we investigated the thermal hysteresis in the phase transition between the cholesteric liquid crystal and the blue phase of liquid crystal. The thermal hysteresis of such a chiral doped nematic liquid crystal occurs over 6oC. Both the CLC phase and the blue phase can stably exist at room temperature and be switched to each other using temperature-controlled processes. Further, we demonstrated two sets of bistable conditions using various surface treatments. In a homogeneous aligned sample, two stable states, CLC with a planar alignment and blue phase with a uniform lattice distribution, reflect light of wavelengths 480-510nm and 630nm, respectively, as determined by the corresponding Bragg¡¦s reflection conditions. In the untreated sample, the CLC phase with a focal conic texture can scatter light and the blue phase with a non-uniform lattice distribution provides high isotropic optical transparency.
|
12 |
Submillisecond-response Blue Phase Liquid Crystals For Display ApplicationsChen, Kuan Ming 01 January 2012 (has links)
With exploding growth of information exchanges between people, display has become indispensable in our daily lives. After decades of intensive research and development in materials and devices, and massive investment in manufacturing technologies, liquid crystal display (LCD) has overcome various obstacles and achieved the performance we need, such as wide viewing angle, high contrast ratio, and high resolution, etc. These excellent performances make LCD prevailed in every perspective. Recently, with the demands of energy conservation, a greener LCD with lower power consumption is desired. In order to achieve this goal, new energy-effective driving methods, such as field sequential color display, have been proposed. However, in order to suppress color breakup the LC response time should be faster than 1 ms. To overcome this challenge, various fast-response liquid crystal modes, such as thin cell gap, low viscosity materials, overdrive and undershoot voltages, polymer stabilization, and ferroelectric liquid crystal, are under active investigations. Among these approaches, blue phase liquid crystal (BPLC) shows a greater potential with less fabrication limitations. In this dissertation, the feasibility of polymer-stabilized blue phase liquid crystal for display applications is explored starting from the building blocks of the material system, polymer-stabilization processes, test cell preparations, electro-optical (EO) properties, to suggested approaches for further improvements. iv Because of the nature of blue phase liquid crystals, delicate balance among system components is critically important. Besides the properties of each composition, the preparation process also dictates the EO performance of the self-assembled nano-structured BPLC composite. After the preparation of test cells, EO properties for display applications are investigated and results described. Approaches for further improvements of the EO properties are also suggested in the final part of this dissertation.
|
13 |
Low Voltage Blue Phase Liquid Crystal DisplaysRao, Linghui 01 January 2012 (has links)
From cell phones, laptops, desktops, TVs, to projectors, high reliability LCDs have become indispensable in our daily life. Tremendous progress in liquid crystal displays (LCDs) has been made after decades of extensive research and development in materials, device configurations and manufacturing technology. Nowadays, the most critical issue on viewing angle has been solved using multidomain structures and optical film compensation. Slow response time has been improved to 2-5 ms with low viscosity LC material, overdrive and undershoot voltage, and thin cell gap approach. Moving image blur has been significantly reduced by impulse driving and frame insertion. Contrast ratio in excess of one million-to-1 has been achieved through local dimming of the segmented LED backlight. The color gamut would exceed 100% of the NTSC (National Television System Committee), if RGB LEDs are used. Besides these technological advances, the cost has been reduced dramatically by investing in advanced manufacturing technologies. Polymer-stabilized blue phase liquid crystal displays (BPLCDs) based on Kerr effect is emerging as a potential next-generation display technology. In comparison to conventional nematic devices, the polymer-stabilized BPLCDs exhibit following attractive features: (1) submillisecond response time, (2) no need for molecular alignment layers, (3) optically isotropic dark state when sandwiched between crossed polarizers, and (4) transmittance is insensitive to cell gap when the in-plane electrodes are employed. However, aside from these great potentials, there are still some tough technical issues remain to be addressed. The major challenges are: 1) the operating voltage is still too high (~50 Volts vs. 5 Volts for conventional nematic LCDs), and the transmittance is relatively low (~65% iv vs. 85% for nematic LCDs), 2) the hysteresis effect and residual birefringence effect are still noticeable, 3) the mesogenic temperature range is still not wide enough for practical applications (40 oC to 80 oC), and 4) the ionic impurities in these polymer-stabilized nano-structured LC composites could degrade the voltage holding ratio, which causes image sticking. In this dissertation, the BPLC materials are studied and the new BPLC device structures are designed to optimize display performances. From material aspect, the electro-optical properties of blue phase liquid crystals are studied based on Kerr effect. Temperature effects on polymer-stabilized blue phase or optically isotropic liquid crystal displays are investigated through the measurement of voltage dependent transmittance under different temperatures. The physical models for the temperature dependency of Kerr constant, induced birefringence and response time in BPLCs are first proposed and experimentally validated. In addition, we have demonstrated a polymer-stabilized BPLC mixture with a large Kerr constant K~13.7 nm/V2 at 20 oC and =633 nm. These models would set useful guidelines for optimizing material performances. From devices side, the basic operation principle of blue phase LCD is introduced. A numerical model is developed to simulate the electro-optic properties of blue phase LCDs based on in-plane-switching (IPS) structure. Detailed electrode dimension effect, distribution of induced birefringence, cell gap effect, correlation between operation voltage and Kerr constant, and wavelength dispersion are investigated. Viewing angle is another important parameter. We have optimized the device configurations according to the device physics studied. With proper new device designs, the operating voltage is decreased dramatically from around 50 Volts to below 10 Volts with a reasonably high transmittance (~70%) which enables the BPLCDs to be addressed by amorphous silicon thin-film transistors (TFTs). Moreover, weak wavelength v dispersion, samll color shift, and low hysteresis BPLCDs are achieved after their root causes being unveiled. Optimization of device configurations plays a critical role to the widespread applications of BPLCDs. In addition to displays, blue phase liquid crystals can also be used for photonic applications, such as light modulator, phase grating, adaptive lens and photonic crystals. We will introduce the application of blue phase liquid crystal as a modulator to realize a viewing angle controllable display. The viewing angle can be tuned continuously and precisely with a fast response time. The detailed design and performance are also presented in this dissertation.
|
14 |
Optically Isotropic Liquid Crystals For Display And Photonic ApplicationsYan, Jin 01 January 2013 (has links)
For the past few decades, tremendous progress has been made on liquid crystal display (LCD) technologies in terms of stability, resolution, contrast ratio, and viewing angle. The remaining challenge is response time. The state-of-the-art response time of a nematic liquid crystal is a few milliseconds. Faster response time is desirable in order to reduce motion blur and to realize color sequential display using RGB LEDs, which triples the optical efficiency and resolution density. Polymer-stabilized blue phase liquid crystal (PS-BPLC) is a strong candidate for achieving fast response time because its self-assembled cubic structure greatly reduces the coherence length. The response time is typically in the submillisecond range and can even reach microsecond under optimized conditions. Moreover, it exhibit several attractive features, such as no need for surface alignment layer, intrinsic wide viewing angle, and cell gap insensitivity if an in-plane-switching (IPS) cell is employed. In this dissertation, recent progresses in polymer-stabilized blue phases, or more generally optically-isotropic liquid crystals, are presented. Potential applications in display and photonic devices are also demonstrated. In Chapter 1, a brief introduction of optically isotropic liquid crystals is given. In Chapter 2, we investigate each component of polymer-stabilized blue phase materials and provide guidelines for material preparation and optimization. In Chapter 3, the electro-optical properties of PS-BPLCs, including electric-field-induced birefringence and dynamic behaviors are characterized. Theoretical models are proposed to explain the physical phenomena. Good agreements between experimental data and models are obtained. The proposed models also provide useful guidelines for both material and device optimizations. Four display and photonic devices using PS-BPLCs are demonstrated in Chapter 4. First, by red-shifting the Bragg reflection and using circular polarizers, we reduce the LCD driving voltage by 35% as compared to a short-pitch BPLC while maintaining high contrast ratio and submillisecond response time. Second, a turning film which is critically needed for widening the viewing angle of a vertical field switching (VFS) BPLC mode is designed. With this film, the viewing angle of VFS is widened to [plus or minus] 80[degrees] in horizontal direction and [plus or minus] 50[degrees] in vertical direction. Without this turning film, the viewing angle is only [plus or minus]30[degrees], which is too narrow for most applications. Third, a reflective BPLC display with vivid colors, submillisecond response time, and natural grayscales is demonstrated for the first time. The proposed BPLC reflective display opens a new gateway for 3D reflective displays; it could make significant impact to display industry. Finally, we demonstrate a tunable phase grating with a high diffraction efficiency of 40% and submillisecond response time. This tunable grating exhibits great potential for photonic and display applications, such as optical interconnects, beam steering, and projection displays.
|
15 |
Electrically-tunable Colors of Chiral Liquid Crystals for Photonic and Display ApplicationsLu, Shin-Ying 16 July 2010 (has links)
No description available.
|
16 |
Liquid Crystalline Amorphous Blue Phase: Tangled Topological Defects, Polymer-stabilization, and Device ApplicationKim, Min Su 01 December 2015 (has links)
No description available.
|
17 |
Flexo electro-optic liquid crystals for phase modulationNosheen, Shabeena January 2019 (has links)
Soft matter, self-assembled 3D photonic structures such as blue phase liquid crystals have of great interest to the displays industry and are highly desirable as spatial light modulators because of their polarisation independence and fast switching. However, these types of devices suffer from multistep fabrication conditions and require high threshold voltages. To overcome these limitations, two key points were considered: High flexoelectric liquid crystals are capable of uniform 3D self-assembly, with a wide temperature range but have high threshold voltages, whereas, other classes of high dielectric liquid crystals have fast electro-optic response times with low threshold voltages but show poor 3D self-assembly. In this work, new mixture formulations have been devised having both properties in moderation in order to achieve simple yet stable 3D self-assembled blue phases with fast response times at as low as possible applied fields. Dielectric materials were considered from a commercial source whereas, miscible flexoelectric soft materials were synthesised in-house. These synthesised materials were fully characterised. Then mixtures were formulated in commercial high dielectric hosts to study their miscibility, new mesogenic transitions and electro-optic responses in terms of flexoelectric and dielectric properties. The selected mixtures were further investigated for the rapid growth of blue phases and their compatibility with reactive mesogens to form stable blue phases at room temperature. This new formulation of materials has given rise to mixtures and devices which are inherently easy to fabricate allowing the robust and resilient growth of blue phases under an hour in standard laboratory conditions. Furthermore, polarisation independent electro-optic switching has been characterised at fields < 1V micron m-1. For phase modulation studies of these stabilised blue phase devices, phase shift was measured using a modified Young's slit interferometer. The observed results were very promising, with a full 2.5 pi phase shift observed at a field of 9.25 V micron m-1 when compared to earlier reported devices (which required complicated multistep fabrication processes) giving values of full 1.8 pi phase shifts at 20 V micron m-1.
|
18 |
Tunable Polarization-Independent Fabry-Pérot Filters Using Blue-Phase Liquid CrystalChen, Yan-han 20 July 2011 (has links)
Fabry-Pérot (FP) filters are widely used in telecommunications, lasers and spectroscopy to measure the wavelengths of light. The properties of a FP filter depend on the wavelength and incident angle of the light source, the thickness of the etalon and the refractive index of the material between the reflecting surfaces. In previous studies, the nematic liquid crystal (NLC) is employed as the medium of FP filters because of its simple structure and ease of modulation. The directors of the NLC could be rotated by applying an electric field. Due to the birefringence of the NLC, the optical characteristics of the device are polarization dependent.
Blue phase liquid crystal (BPLC) is the phase between cholesteric phase and isotropic phase. It¡¦s an optically isotropic material can function as an active index-tuning material adopted in a FP filter, and the characteristics of the BPLC-based FP filter are polarization independent. By applying an electric field, the Kerr effect can be induced due to the local reorientation of liquid crystals in BP structure, leading to the effective index change of BPLC and the transmission peak shifts. Furthermore, the effective index of BPLC approaches the ordinary index of host LCs under increasing electric fields. In addition, the BPLC using polymer network construction can be stabilized in room temperature and improves the convenience of the device. According to the experimental results, the tunability of the BPLC-based FP filter is about 1nm/V. The measured response time of the BPLC-based FP filter is 1ms.
|
19 |
The study of fast-response and polarization independent diffraction grating by using blue phase liquid crystalsLin, Shun-Mao 27 August 2012 (has links)
In this study, the phase grating was investigated by using electro-optical characteristics of blue phase liquid crystals(BPLCs) such as fast-response and optically isotropic etc. The BPLC units was affected by distribution of periodically electric field and then changed the cubic structure into others, when applying voltage in etched electrode of grating pattern. A linearly polarized light is incident upon the sample and experience the periodic difference of index, and diffraction effect was generated. In order to find out the best conditions of these liquid crystals device, we discussed different factor such as angle of linearly polarized light, operating temperature of grating, cooling rate and electrode structure.
|
20 |
Liquid crystal blue phase for electro-optic displaysTian, Linan January 2014 (has links)
Liquid crystals are a vast and diverse class of materials which ranges from fluids made up of simple rods, polymers and solutions, to elastomers and biological organisms. Liquid crystal phases are neither crystalline, nor a ‘normal’ isotropic liquid, but lie somewhere in between these two common states of matter. Liquid crystals have found enormous use in display devices due to their electro-optic properties. In this thesis, the optical and electro-optical properties of some chiral liquid crystalline phases are studied. The optical and electro-optical behaviour of liquid crystalline blue phases has been investigated via a detailed analysis of the reflection spectrum from thin, vertical field (VF) cells. Spectral analysis in this thesis was performed using a numerical fitting technique based on the Berreman 4x4 matrix method. The validity of the technique was proved through comparisons of independent measurements with the calculated physical parameters. A novel Kerr effect measurement method was proposed in this thesis and a known material was used to verify this new method. The Kerr constant together with its dispersion relation was measured using a white light source. An unusually large Kerr constant, K, is determined in the blue phases of a non-polymer stabilized material, ~ 3x10-9 mV-2 (BPI). The large value of K is attributed to significant pre-transitional values of the dielectric anisotropy and birefringence. K follows an inverse dependence on temperature which is more marked in BPII than BPI, and we consequently suggest that the BPI demonstrates properties best suited to electro-optic devices. The field effects in blue phase include electrostriction and the influence of the Kerr effect was separated from electrostriction phenomena for the first time in this work. Finally in the Kerr effect measurements, the Kerr constant in the optically isotropic dark conglomerate phase of a bent-core material was studied for the first time, with rather low values, ~1x10-11 mV-2. The low Kerr constant can be understood in the context of the physical properties of the material. Supercooling phenomena in the blue phase were studied through an analysis of the optical properties in thin cells. Features including the Bragg reflection peak jump and hysteresis are measured through the reflection spectra. A blue phase sample with a single orientation over an area of millimeters was prepared to help the spectra study of the blue phases. Although some previous reports indicated that there may be a new blue phase in the supercooled region, we find that there is no evidence shows that the supercooled blue phase has a different structure from the BPI.Chiral molecules have been included as dopants in achiral bent-core materials to produce a range of new chiral mixtures. Different host materials and chiral dopants have been used to produce several chiral nematic materials in which the chiral nematic phase, the underlying smectic phase and the blue phases are examined. The order parameter is determined as a function of temperature in the chiral nematic phase, and compared to that determined for several calamitic materials; no discernible difference is found. A study of the pitch divergence in the chiral nematic phase of the bent-core mixtures shows interesting properties at both low temperature (as the smectic phase is approached) and at high temperatures (at the transition to the blue phase). An unusual phase separation of the chiral dopant in the mixtures is reported, and details are deduced through a comparison between different mixtures. It is found that a dopant with similar clearing point to the bent-core material has less likelihood of phase separation. Although the blue phase temperature range is extended in these mixtures in comparison with typical values for calamitic materials, it does not extend beyond 2K in any of the materials. Both blue phase I and the fog phases are observed in these chiral bent core systems, but no BPII is observed in any of the materials studied. The small k33 (~ 2.8 pN at 10 K below clearing point) in the bent-core host material is suggested as one of the reasons that the blue phase range is not enhanced as much as may have been expected from reports by other authors.
|
Page generated in 0.0359 seconds