Spelling suggestions: "subject:"bluebunch wheather"" "subject:"bluebush wheather""
1 |
Genetic variation in bluebunch wheatgrassDunford, Max P. 01 August 1958 (has links)
Agropyron spicatum (Pursh) Scribn, and Smith, an important forage grass distributed primarily throughout western United States and northward into Canada, exhibits considerable ecological, cytological, and genetic variation. Twenty-five populations of 100 plants each were scored to obtain data on morphological and ecological variation. Statistical analysis of the data from fourteen of the populations showed that correlations between awn divergence and length, rhizomes with number of culms, adn diameter with number of culms were inconsistent or not significant. However, the correltion between rhizomes and diameter was significant in all populations.
|
2 |
Quality of bluebunch wheatgrass (Agropyron spicatum) as a winter range forage for Rocky Mountain Elk (Cervus elaphus nelsoni) in the Blue Mountains of OregonBryant, Larry Duane 07 May 1993 (has links)
This research was conducted on three study areas on elk winter
ranges in Northeast Oregon. One was on the Starkey Experimental
Forest and Range and the others were in the same vicinity. Plant
appendages, spring and fall defoliation and fall growth of bluebunch
wheatgrass were evaluated in terms of quality of nutrient content
during September through April of 1986-87 and 1987-88. Four
treatments were applied. Plants were clipped to a 2.5 cm and 7.6 cm
stubble height in the spring before the boot stage of phenological
development; plants were clipped to a 7.6 cm stubble height in the
fall after plant maturity in September; plants were not clipped
during the year. Percent crude protein, dry matter digestibility
(DMD), acid detergent fiber (ADF), and lignin were evaluated
monthly. Samples from the four treatments were also analyzed from
October to April to determine monthly changes in nutrient contents.
Production of growth from all treatments was measured in October and
March each year.
Leaf material had higher percent crude protein and DMD, with
lower percent ADF and lignin than the inflorescence and culm. The
third leaf (the youngest plant material) had the highest nutrient
value of all appendages. The culm and inflorescence values were not
statistically different.
Growth following spring defoliation treatments produced higher
percent crude protein and DMD (P<.05), with a lower percent ADF and
lignin than non-treated plants in both years. This was particularly
pronounced during 1986 when precipitation in late summer initiated
fall growth. Growth following spring defoliation and bluebunch
wheatgrass not defoliated did not produce crude protein or DMD
values sufficient to meet minimum dietary maintenance requirements
for elk.
Fall precipitation adequate to promote fall growth occurred
only in 1986. Growth after fall defoliation had the highest percent
crude protein and DMD with the lowest ADF and lignin values of all
vegetation sampled. However, without 3-5 cm of late summer/early
fall rains, fall growth does not occur. This happened in 1987.
When growth does occur in fall the quality of the growth exceeds the
minimum dietary maintenance requirements for elk.
Freezing and thawing of fall growth plant material had minimal
effect on forage quality. There were differences (P<.05) between
the monthly values for percent crude protein and ADF starting in
October and ending in April. However, the percent DMD and lignin
from October to April were not different (P<.05). / Graduation date: 1993
|
3 |
Effects of Abscisic Acid (ABA) on Germination Rate of Three Rangeland SpeciesBadrakh, Turmandakh 01 May 2016 (has links)
Seeds sown in the fall to restore sagebrush (Artemisia spp.) steppe plant communities could experience high mortality when they germinate and seedlings freeze during the winter. Delaying germination until the risk of frost is past could increase seedling survival. We evaluated the use of abscisic acid (ABA) to delay germination of Elymus elymoides, Pseudoroegneria spicata, and Linum perenne. The following treatments were applied: uncoated seed, seed coated with ABA at 2.2, 4.4, 8.8, 13.2, and 17.6 g of active ingredient kg-1 of seed, and seed coated with no ABA. The influence of seed treatments on germination were tested at five different incubation temperatures (5-25°C). The lowest application rate of ABA had no significant influence on germination percentage but higher application rates showed a decline. All concentrations of ABA tested delayed germination, especially at low incubation temperatures. For example, the time required for 50% of the seeds to germinate at 5°C was increased with the use of the lowest ABA application rate by 56, 61, and 14 days, for E. elymoides, P. spicata, and L. perenne, respectively. Quadratic thermal accumulation regression models were developed for each species and treatment to predict progress toward germination. For the two grasses, models had sufficient accuracy (R2 = 0.61- 0.97) to predict germination timing using field seedbed temperatures. Equations for L. perenne were less accurate (R2 = 0.03-0.70). Use of these models will allow testing whether ABA will delay germination sufficiently to avoid winter frost periods and provide the basis for future field tests.
|
4 |
Developing Rangeland Restoration Techniques: A Look at Phosphorus Fertilizer as a Seed Coating to Improve Bluebunch Wheatgrass GrowthParkinson, Morgan Elaine 30 July 2020 (has links)
Planting native species after a major disturbance is a critical tool land managers use to stabilize soils, restore ecosystem processes, and prevent weed invasion. However, within the sagebrush steppe and other arid and semi-arid environments the percentage of sown seeds that produce an adult plant is remarkably low. Applying fertilizers at the time of planting may improve native plant establishment by increasing the ability of the seedlings to cope with environmental stresses. However, traditional fertilizer applications are often economically infeasible and may be counterproductive by encouraging weed invasion. Seed coating technology allows for the efficient application of fertilizers within the microsite of the seeded species. The objective of our research was to determine the optimal rate of fertilizer to apply to the seed to improve seedling emergence and plant growth. We applied a phosphorus (P) rich fertilizer (0.13 g P g-1) to bluebunch wheatgrass (Pseudoroegneria spicata (Pursh) Á. Löve) seeds in a rotary coater at rates ranging from 0 to 50 g of fertilizer 100 g-1 seed. Three separate studies were conducted to test germination, biomass, relative growth rate, and tissue nutrient uptake. Study one showed decreasing root and shoot biomass and increasing time to 50% germination as fertilizer rates increased. Study two showed no difference in relative growth rate between the controls and fertilizer treatments. Study three showed no difference in root and shoot biomass or nutrient concentration between treatments except in the lowest fertilizer treatment (10 g fertilizer 100 g-1 seed), which was significantly lower in root and shoot biomass than all other treatments but had higher P tissue concentrations than all other treatments. Collectively these results showed no evidence that a P fertilizer coating could aid in bluebunch wheatgrass seedling establishment. Because bluebunch wheatgrass and similar late-seral plants have evolved with low nutrient requirements they may not be physiologically capable of handling increased nutrient supply, which may explain the results of our studies. Continued studies and fieldwork need to be performed to evaluate the potential of fertilizer seed coatings in restoration efforts.
|
5 |
Novel Techniques to Improve Restoration of Native Rangeland SpeciesAnderson, Rhett Michael 27 March 2020 (has links)
The sagebrush steppe is a particularly sensitive ecosystem that is easily disturbed by fires, oil and gas extraction, woody-plant encroachment, and overgrazing. The natural regeneration of native species following a disturbance within this system is typically slow and sporadic, which allows invasive grasses to occupy the landscape. Attempts to assist the recovery of these landscapes through direct seeding is commonly met with poor success rates, particularly in lower elevation, drier sites. Novel seed enhancement technologies and planting techniques that mitigate limiting factors impairing restoration efforts may improve the likelihood of restoring these degraded areas. For chapter 1, we evaluated a solid-matrix priming technique, where bluebunch wheatgrass (Pseudoroegneria spicata) and Lewis flax (Linum lewisii) were primed and then the priming matrix and seed were pelleted together. We evaluated primed seed that had been incorporated into pellets at two field sites against seed that was pelleted but been left unprimed, and untreated seed (control). These three seed treatments were planted in the spring (mid-march) in shallow (2-cm) and deep (15-cm) furrows, in a complete factorial design. We found that primed seeds generally produced higher plant densities than control seed at the beginning of the growing season; however, its influence diminished towards the end of the growing season. We also found that deep furrows increased plant density throughout the growing season and even into the following year. The combination of priming and deep furrows outperformed control seed in shallow furrows in all measured metrics. For chapter 2, we evaluated a seed conglomeration technique for improving Wyoming big sagebrush (Artemisia tridentata ssp. Wyomingensis) emergence and survival under fall and winter plantings. The trial was implemented at five sites across Utah and Nevada in a randomized complete block-split-split plot design, with site, and planting season, comprising the split-plot factors. Each site and season combination was seeded with conglomerated and control seed. We found that in most cases, a fall seeding of Wyoming big sagebrush was either the same or more successful compared to planting on the snow in the winter, which is the current suggested practice. Our results also demonstrated that seed conglomeration produced higher plant densities compared to control seed throughout the growing season. The higher density of plants produced from conglomerates combined with the improved seed delivery provided by the conglomeration technique was estimated to offset the cost in producing conglomerates and reduce overall restoration costs by 41%.
|
6 |
Evaluating Native Wheatgrasses for Restoration of Sagebrush SteppesMukherjee, Jayanti Ray 01 May 2010 (has links)
Pseudoroegneria spicata and Elymus wawawaiensis are two native perennial bunchgrasses of North America's Intermountain West. Frequent drought, past overgrazing practices, subsequent weed invasions, and increased wildfire frequency have combined to severely degrade natural landscapes in the region, leading to a decline in the abundance of native vegetation. Being formerly widespread throughout the region, P. spicata is a favorite for restoration purposes in the Intermountain West. Elymus wawawaiensis, which occupies a more restricted distribution in the Intermountain West, is often used as a restoration surrogate for P. spicata. However, since most restoration sites are outside the native range of E. wawawaiensis and as the use of native plant material may be more desirable than a surrogate, the use of E. wawawaiensis as a restoration plant material has been somewhat controversial. The main goal of my research was to identify plant materials of these species with superior seedling growth, drought tolerance, and defoliation tolerance, traits that may contribute to enhanced ecological function in restored rangeland plant communities.
I conducted a growth-chamber study to evaluate morphological and growth-related traits of germinating seedlings of these two species. My study suggested that, while the two bunchgrasses are similar in many ways, they display fundamentally different strategies at the very-young seedling stage. While P. spicata exhibited greater shoot and root biomass to enhance establishment, E. wawawaiensis displayed high specific leaf area (SLA) and specific root length (SRL), two traits commonly associated with faster growth.
According to the eco-physiology literature, plants with greater stress tolerance display lesser growth potential. However, my greenhouse study showed that E. wawawaiensis was relatively more drought tolerant than P. spicata, despite higher expression of growth-related traits, e.g., SLA and SRL. While the two species displayed similar water use efficiency when water was abundant, E. wawawaiensis was also more efficient in its water use when drought stress was imposed.
In a field study, I found E. wawawaiensis to be twice as defoliation tolerant as P. spicata. This study showed that P. spicata is typically more productive in the absence of defoliation, but E. wawawaiensis was more productive after defoliation due to its superior ability to recover and hence is a better candidate for rangelands that will be grazed.
Hence, my study showed that E. wawawaiensis, despite being regarded as a surrogate for P. spicata, exhibits superior seedling establishment, drought tolerance, and defoliation tolerance. Therefore, E. wawawaiensis has advantages as a restoration species for the Intermountain West.
|
7 |
Plant Establishment and Soil Microenvironments in Utah Juniper Masticated WoodlandsYoung, Kert R. 05 July 2012 (has links) (PDF)
Juniper (Juniperus spp.) encroachment into sagebrush (Artemisia spp.) and bunchgrass communities has reduced understory plant cover and allowed juniper trees to dominate millions of hectares of semiarid rangelands. Trees are mechanically masticated or shredded to decrease wildfire potential and increase desirable understory plant cover. When trees are masticated after a major increase in tree population density and associated decrease in perennial understory cover, there is a risk that invasive annual grasses will dominate because they are highly responsive to the increased resource availability that commonly follows removal of the main resource user. To determine if tree mastication increases resource availability and subsequently favors invasive annual or perennial grasses, we compared soil temperature, water, and nutrient microenvironmental conditions and seedling establishment and growth. We used the major rangeland weed, cheatgrass (Bromus tectorum L.), to represent invasive annual grasses and Anatone bluebunch wheatgrass (Pseudoroegneria spicata (Pursh) A. Löve), a natural accession of native bluebunch wheatgrass, to represent the perennial grasses of the sagebrush-bunchgrass plant community. These comparisons were made between and within paired-adjacent masticated and untreated areas at three locations in Utah dominated by Utah juniper (Juniperus osteosperma (Torr.) Little). Juniper tree mastication generally increased resource availability with masticated areas having greater soil temperature, soil water availability, and soil N supply rates than untreated areas. Prior to juniper tree mastication litter mounds were not found to be resource islands probably because juniper trees themselves were using subcanopy soil water and nutrients. After juniper tree mastication and elimination of these predominant resource users, litter mounds served as resource islands with greater soil water availability and N supply rates than bare interspaces during the critical time for seedling establishment in spring. Plant growth followed in line with greater resource availability after tree mastication with masticated areas having more productive although fewer invasive-annual and perennial grass seedlings than untreated areas. These results suggest that increases in resource availability and warmer spring temperatures associated with mastication will not necessarily favor invasive annual over perennial grass seedling establishment. Resilience of the sagebrush-bunchgrass community to return to dominance after juniper control will likely be greatly influenced by how much of the sagebrush-bunchgrass community remains following tree control and the intensity of propagule pressure by invasive species. If only invasive annuals remain when the trees are treated then invasive annuals would be expected to dominate the post-treatment plant community especially with their ability to establish inside litter mounds unless they were also controlled and perennial grasses planted at the time of treatment.
|
Page generated in 0.0344 seconds