• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 23
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 35
  • 35
  • 27
  • 22
  • 12
  • 8
  • 7
  • 7
  • 7
  • 7
  • 7
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Vizuálně realistické modelování deformací dynamických objektů / Visually realistic modeling of dynamic objects deformations

Bulušek, Petr January 2013 (has links)
The present work deals with simulation methods for rigid bodies and deformable bodies. In the first chapter you can find research of some methods for simulation of rigid body physics with emphasis on method used in open source physics engine Bullet. In second chapter you can find methods for simulation of deformable bodies, again with emphasis on Bullet physics engine. In last chapter model order reduction technique is presented. This method enables to reduce system of ordinary differential equations. These equations come for example from applying finite element method to partial differential equations describing motion of elastic body. The technique is studied on bar truss systems. Powered by TCPDF (www.tcpdf.org)
12

Creating Extended Landau Levels of Large Degeneracy with Photons

Chen, Kuan-Hao January 2018 (has links)
No description available.
13

Real-Time Soft Body Physics Engine for Enhanced ConvexPolygon Dynamics

Vickgren, Martin January 2023 (has links)
This thesis covers the development process of implementation, and evaluation of a softbody physics engine for convex polygon objects. The main feature is implementation of adynamic polygon collider that represents a polygons shape correctly, while still being ableto collide with other objects in the simulation. Objects are able to deform both temporarily and permanently using springs with distance constraints. Pressure simulation is alsoimplemented to simulate inflated polygons. The physics bodies does not feature frictionbetween objects, only friction against a static boundary of the simulation. The engine isthen evaluated in order to determine if it can run in real-time which is one of the goals.When it comes to the simulation, Verlet-integration will be used for updating the positions of particles, and every polygon will be built using these particles, and combinedusing certain constraints to make the particles act as one combined object. The main problem that will be solved is the interpenetration solver, which ensures that polygons do notoverlap, and two formulas will be combined to solve this problem. The collision detectionmethod uses line intersections to determine if objects are overlapping, this method endedup being quite expensive for polygons with a lot of vertices. One optimization techniqueis implemented which is axis-aligned bounding boxes around objects which improvedperformance significantly, which also makes the engine more viable for real-time simulations. The physics engine in this report is deterministic using a fixed time-step, dynamictime-step is not tested. The engine also only supports discrete collision detection.
14

An Adiabatic Hyperspherical Treatment of Few-Body Systems in Atomic and Nuclear Physics

Michael David Higgins (14198039) 25 April 2023 (has links)
<p>  The adiabatic hyperspherical representation has been applied to study few-body systems in both ultracold atomic physics and low energy nuclear physics, as it is a powerful tool that can be used to solve a variety of few-body Hamiltonian's across a wide range of disciplines in physics. In conjunction with the adiabatic hyperspherical representation, we utilized an explicitly correlated Gaussian basis expansion, different from the traditional hyperspherical harmonic expansion typically used with this method. In atomic physics, we applied this method to study the four-body (e<sup>-</sup>e<sup>-</sup>e<sup>+</sup>e<sup>+</sup>) coulombic system to study positronium-positronium collisions and to get a theoretical value of the 1<em>s</em>-2<em>s</em> scattering length. This work is published in [Phys. Rev. A 100, 012711 (2019)]. We also looked at few-body physics near the unitary limit, particularly near the <em>s</em>- and <em>p</em>-wave unitary limits where the dominant length scale is the scattering length and scattering volume. On this front, we studied universal physics in this regime for the equal-mass system. This work is published in [Phys. Rev. A 106, 023304 (2022)]. This method was further applied to few-body nuclear physics.</p> <p><br></p> <p>  We treat the three and four neutron scattering problems in the <em>N</em>-body continuum to understand and gain insight into possible few-neutron resonances, most notably whether a four-neutron resonance exists. There have been many conflicting theoretical results on whether a four-neutron resonance exists that stemmed from a recent experiment by Kisimori et al. in 2016 [Phys. Rev. Lett. 116, 052501 (2016)]. To provide further theoretical insight on this problem, we use the adiabatic hyperspherical toolkit to probe the scattering continuum and from the 4<em>n</em> density of states, conclude that there is no 4<em>n</em> resonance state. Our work on this is published in [Phys. Rev. Lett. 125, 052501 (2020)] and [Phys. Rev. C 103, 024004 (2021)]. There are other few-body systems in nuclear physics that are explored in the adiabatic hyperspherical representation, including systems like the triton, helium-3, and helium-4 nuclei to visualize and characterize the different reaction pathways the <em>N</em>-body system can fragment into at a given collision energy.</p>
15

Sambandet mellan ryttarens kroppsfysik och ridning

Linde, Ann January 2008 (has links)
Syftet var att studera elevernas uppfattningar inom Naturbruksprogrammets hästinriktning om sambandet mellan ryttarens kroppsfysik och ridningen. Följande frågor har ställts:•Vilken betydelse ansåg eleverna att en god kroppsfysik hade för ridningen? •Hur uppfattade eleverna olika pedagogiska metoders betydelse för ridningen? •Hur uppfattade eleverna olika pedagogiska metoders betydelse för kroppsfysiken?•Hade eleverna förstått att ridningen påverkades av deras fysiska hälsa?För att besvara frågeställningar har jag använt mig av en enkät. De elever som besvarade enkäten deltog i ett projekt, som genomfördes med hjälp av olika didaktiska metoder och övningar samt observationer. Projektets avsikt var att förbättra ryttarens kroppsfysik samt dess inverkan på hästen. Resultatet visade att eleverna ansåg att det främst var videofilmningen som gynnade ridningen och att de fysiska övningarna förbättrade konditionen och smidigheten. De som red regelbundet hade en bättre kroppsfysik. Sammanfattningsvis kan sägas att eleverna hade förstått sambandet av en god kroppsfysik och ridningen.
16

Resonant Floquet scattering of ultracold atoms

Smith, Dane Hudson January 2016 (has links)
No description available.
17

Universality and Beyond: Effective Field Theory for Three-Body Physics in Cold Atoms and Halo Nuclei

Ji, Chen 11 September 2012 (has links)
No description available.
18

Efimov Physics in Fermionic Lithium atoms

Kang, Daekyoung 27 September 2011 (has links)
No description available.
19

Dynamical multi-configuration generalized coherent states approach to many-body bosonic quantum systems

Qiao, Yulong 18 June 2024 (has links)
This doctoral thesis presents an extensive study on the applications of generalized coherent states (GCS) for the quantum dynamics of many-body systems. The research starts with exploring the fundamental properties of generalized coherent states, which are created by generators of the SU($M$) group acting on an extreme state, and demonstrating their role in representing ideal quantum condensates. A significant feature is the relationship between generalized coherent states and the more standard Glauber coherent states (CS). Similarities in their overcomplete and non-orthogonal nature are shown, alongside crucial differences with respect to $U(1)$ symmetry and entanglement properties, which generalized coherent states solely adhere to. Furthermore, this thesis delves into the nonequilibrium dynamics of GCS as well as Glauber CS under nonlinear interactions. Combining analytical analysis and numerical calculations, it is found that while their two-point correlation functions are equivalent in the thermodynamic limit, their autocorrelation functions exhibit distinctly different characteristics. It is proven analytically that the autocorrelation functions of the evolved GCS relate to the ones of the corresponding Glauber CS through a Fourier series relation, which arises due to the $U(1)$ symmetry of the GCS. A substantial part of this thesis is dedicated to investigating the dynamics of the Bose-Hubbard model, incorporating both nonlinear interaction and tunneling term. This investigation introduces a novel approach which employs an Ansatz for the wave function in terms of a linear combination of GCS, where the differential equations of all the variables are determined by the time-dependent variational principle without truncation. This innovative method is adeptly applied to the nonequilibrium dynamics in various scenarios, from the bosonic Josephson Junction model where some fundamental quantum effects can be revealed by a handful of GCS basis functions, to large system size implementations of the Bose-Hubbard model, where the phenomenon of thermalization can be observed. The proposed variational approach provides an alternative way to study the time-dependent dynamics in many-body quantum systems conserving particle number. The final focus of this thesis is on the boson sampling problem within a linear optical network framework. Again adapting a linear combination of GCS, an exact analytical formula for the output state in standard boson sampling scenarios is derived by means of Kan's formula, showcasing a computational complexity that increases less severely with particle and mode number than the super-exponential scaling of the Fock state Hilbert space. The reduced density matrix of the output state is obtained by tracing out one subsystem. This part of the study extends to examining the properties of the subsystem entanglement creation, and offering novel perspectives on entanglement entropy differences between global and local optical networks. This thesis makes several contributions to the field of quantum many-body systems, particularly highlighting the potential applications of GCS. The presented research offers a new variational method to the nonequilibrium dynamics, and paves the way for future explorations and applications in quantum simulations, quantum computing and beyond.
20

Magnetic frustration in three dimensions

Schäfer, Robin 16 January 2023 (has links)
Frustrated magnets realize exotic forms of quantum matter beyond conventional order. Due to a lack of controlled and unbiased methods to study frustration in three dimensions, many questions remain unanswered. While most established numerical techniques have limited applicability, approaches based on cluster expansions are promising alternatives. By design, they do not suffer from dimensionality or frustration and generate reliable insights into the thermodynamic limit without any restriction in the parameter space. This thesis makes significant methodological progress in controlled numerical approaches tailored to study frustration in three dimensions. It covers (i) an automatic detection algorithm for symmetries in generic clusters, (ii) a general approach to the numerical linked cluster algorithm to study finite - and zero - temperature properties, and (iii) an expansion method based on the linked cluster theorem to obtain a suitable dressing for valence-bond crystals. In particular, we study one of the archetypal problems of frustrated magnetism in three dimensions: the pyrochlore Heisenberg antiferromagnet. For the first time, we are able to unbiasedly resolve its thermodynamic quantities to a temperature far beyond the scale on which the Schottky anomaly occurs. The broad applicability of the numerical linked cluster algorithm allows for the systematic investigation of different spin-liquid candidate materials such as the Cerium-based pyrochlores Ce₂Zr₂O₇ and Ce₂Sn₂O₇. Despite a similar chemical composition, the algorithm finds fundamental differences in their quantum mechanical nature by constraining their microscopic exchange parameters. Zero temperature properties are even less accessible: Neither the nature of the ground state nor an estimate of its energy are known for the pyrochlore antiferromagnet. Large-scale density matrix renormalization group calculations pushed to three dimensions provide the first reliable estimate of its ground-state energy and yield robust evidence for a spontaneous inversion symmetry breaking manifesting itself as an energy density difference on the tetrahedral sublattice. The symmetry-breaking tendency of the model is further observed in the presence of an external magnetic field where similar calculations suggest a stable 1/2-magnetization plateau. Continuing the investigation of low-energy states, we propose a new family - exponentially numerous in the linear system size - of valence-bond crystals as potential ground states. Understanding the stability of the previously overlooked family of states suggests a remarkable change of perspective on frustration with a focus on unfrustrated motifs. In sum, these discoveries present significant progress towards resolving long-standing questions regarding the nature of the ground state of the quantum pyrochlore S=1/2 antiferromagnet. / Frustrierte Magnete realisieren exotische Formen von Quantenmaterie, welche gewöhnliche Ordnungen übersteigen. Viele etablierte numerische Methoden versagen bei Frustration in drei Dimensionen, da sie entweder nicht anwendbar sind, unkontrolliert sind oder bestimmte Zustände vorziehen. Clusteralgorithmen bilden eine vielversprechende Alternative. Sie erfahren keine Einschränkung durch die Dimensionalität oder die Frustration des Problems und erlauben daher zuverlässige Einblicke in den thermodynamischen Limes. Diese Arbeit präsentiert methodische Fortschritte von kontrollierbaren Ansätzen, welche auf frustrierte Systeme in drei Dimensionen zugeschnitten sind. Sie beinhaltet (i) die Entwicklung eines Algorithmus zur automatischen Detektion räumlicher Symmetrien für allgemeine Cluster, (ii) einen allgemeinen Zugang zum 'numerical linked cluster algorithm'', um Eigenschaften bei endlicher Temperatur und dem absoluten Nullpunkt zu studieren und (iii) einen Clusteralgorithmus zur Optimierung des Zustands eines 'valence-bond' Kristalls. Die methodischen Fortschritte dieser Arbeit tragen zur Lösung eines archetypischen Problems von frustriertem Magnetismus in drei Dimensionen bei: dem Pyrochlor Heisenberg Antiferromagnet. Sie erlauben zuverlässige Einblicke in die Thermodynamik bis hin zu nicht-trivialen Temperaturen weit unter der Schottky-Anomalie. Die weiten Anwendungsmöglichkeiten des Clusteralgorithmus macht die systematische Untersuchung von Spinflüssigkeitskandidaten, wie die auf Cer basierenden Pyrochlore Ce₂Zr₂O₇ und Ce₂Sn₂O₇, möglich. Trotz einer ähnlichen chemischen Komposition, findet der Algorithmus fundamentale Unterschiede in ihrer quantenmechanischen Struktur. Frustration in drei Dimensionen ist am absoluten Nullpunkt ähnlich unzugänglich wie bei endlicher Temperatur und weder der Grundzustand, noch Schätzungen der Grundzustandsenergie des Pyrochlor Antiferromagneten sind bekannt. Groß angelegte Dichtematrixrenomierungsgruppenrechnungen in drei Dimensionen ermöglichen erstmals eine verlässliche Schätzung der Energie und finden eine spontan gebrochene Inversionssymmetrie, welche durch einen Unterschied in der Energiedichte auf dem tetraedrischen Untergitter ausgedrückt ist. Die Tendenz, die Symmetrie des Systems zu brechen, ist auch in der Präsenz eines externen magnetischen Feldes zu beobachten. Rechnungen deuten die Stabilität des 1/2-Magnetisierungsplateaus an. Einen signifikanten Beitrag zum Verständnis des Heisenberg-Models auf dem Pyrochlor wird durch eine Familie von potentiellen Grundzuständen geleistet, welche als harte Hexagone im Gitter visualisiert werden können. Ihre Anzahl skaliert exponentiell in der linearen Systemgröße und ihre niedrige Energie eröffnet eine neue Sichtweise auf frustrierte Magnete, welche den Fokus auf unfrustrierte Geometrien lenkt. Im Widerspruch zu der prominenten Spinflüssigkeitsannahme deuten die Ergebnisse dieser Arbeit auf Ordnung im Pyrochlor Antiferromagneten hin.

Page generated in 0.0352 seconds