• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 192
  • 59
  • 35
  • 9
  • 9
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 2
  • Tagged with
  • 376
  • 376
  • 98
  • 54
  • 47
  • 41
  • 35
  • 33
  • 30
  • 30
  • 22
  • 21
  • 18
  • 18
  • 17
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
151

Differences in Thermal Quality Affect Investment in Thermoregulation by Lizards

Lymburner, Alannah 29 April 2019 (has links)
Body temperature affects physiological processes and, consequently, has a large impact on fitness. Lizards need to thermoregulate behaviourally to maintain their body temperature within a range that maximizes performance, but there are costs associated with thermoregulation. The thermal quality of an environment is a major cost of thermoregulation because it directly affects the time and energy that must be invested by an individual to achieve and maintain an optimal body temperature for performance. According to the cost-benefit model of thermoregulation, lizards should only thermoregulate when the benefits outweigh the costs of doing so. Thus, in habitats of poor thermal quality, individuals should thermoregulate less. Using two systems, an elevational gradient and a pair of habitats that vary in the amount of solar radiation they receive, I tested the hypothesis that investment in thermoregulation by lizards is dictated by the associated costs of thermoregulating. Temperature, and thus thermal quality, decreases with elevation. I found a significant positive relationship between elevation and effectiveness of thermoregulation of Yarrow’s spiny lizards (Sceloporus jarrovii). When comparing thermoregulation of ornate tree lizards (Urosaurus ornatus) living in the thermally superior open-canopy wash habitat or the closed-canopy upland habitat, I found that habitat type was a significant predictor of accuracy of body temperature. In the poorer quality habitat, lizards had smaller deviations of body temperature from their preferred temperature range. Overall, I conclude that the thermal quality of a lizards’ environment impacts their thermoregulation in the opposite direction than predicted by the cost-benefit model of thermoregulation. This suggests that the disadvantages of thermoconformity may be greater than the costs thermoregulating as habitats become more thermally challenging.
152

Biological and Bioinspired Photonic Materials for Passive Radiative Cooling and Waveguiding

Shi, Norman Nan January 2018 (has links)
Animals have evolved diverse strategies to control solar and thermal radiations so that they can better adapt to their natural habitats. Structured materials utilized by these animals to control electromagnetic waves often surpass analogous man-made optical materials in both sophistication and efficiency. Understanding the physical mechanism behind these structured materials of nature inspires one to create novel materials and technologies. Our optical and thermodynamic measurements of insects (Saharan silver ants and cocoons of the Madagascar comet moth) living in harsh thermal environments showed their unique ability to simultaneously enhance solar reflectivity and thermal emissivity, and to maintain a cool body temperature. Saharan silver ants, Cataglyphis bombycina, forage on the desert surface during the middle of the day. The ants’ conspicuous silvery glance is caused by a coating of hairs with unique triangular cross-sections. The hair coating enhances not only the reflectivity of the ant’s body surface in the visible and near-infrared range of the spectrum, where solar radiation culminates, but also the emissivity of the ant in the mid-infrared. The latter effect enables the animals to efficiently dissipate heat back to the surroundings via blackbody radiation under full daylight conditions. The fibers produced by the wild comet moth, Argema mittrei, are populated with a high density of air voids that have a random distribution in the fiber cross-section but are invariant along the fiber. These filamentary air voids strongly back-scatter light in the solar spectrum, which, in combination with the fibers’ intrinsic high emissivity in the mid-infrared, enables the cocoon to function as an efficient radiative-cooling device, preventing the pupa inside from overheating. The reduced dimensionality of the random voids leads to strong optical scattering in the transverse direction of the cocoon fibers. This enables tightly confined optical modes to propagate along the fibers via transverse Anderson localization. We made the first observation of transverse Anderson localization in a natural fiber and further demonstrated light focusing and image transport in the fibers. This discovery opens up the possibility to use wild silk fibers as a biocompatible and bioresorbable material for transporting optical signals and images. Drawing inspirations from these discoveries, we designed and developed high-throughput fabrication processes to create coatings and fibers with passive radiative-cooling properties. The radiative-cooling coatings consist of various nanoparticles imbedded within a silicone thin film. The sizes and materials of the nanoparticles were chosen to provide simultaneously high solar reflectivity and thermal emissivity. The coating has been implemented in two site studies on real roofs and has demonstrated reduced roof temperature by up to 30oC in the summer and associated reduction of electricity usage by up to 30%. We also made biomimetic fibers from regenerated silk fibroin and a thermoplastic using wet spinning. Spectroscopic measurements showed that these man-made fibers exhibit exceptional optical properties for radiative-cooling applications.
153

Effect of ethanol on thermoregulation in the goldfish, Carassius auratus

O'Connor, Candace Sharon 01 January 1986 (has links)
In an attempt to elucidate the mechanism by which ethanol affects vertebrate thermoregulation, the effect of ethanol on temperature selection was studied in the goldfish, Carassius auratus. Ethanol was administered to 10 to 15 g fish by mixing it in the water of a temperature gradient. The dose response curve was very steep between 0.5% (v/v) ethanol (no response) and 0.7% (significant lowering of selected temperature in treated fish). Fish were exposed to concentrations of ethanol as high as 1.7%, at which concentration most experimental fish lost their ability to swim upright in the water. At concentrations higher than 0.7%, the magnitude of the effect did not increase with increasing concentration of ethanol; treated animals continued to select temperatures about 2 C below temperatures selected by controls. Experiments alternating exposure to 1.0% ethanol and water showed that the rate of onset and disappearance of the ethanol effect was rapid (within 10 min). Other experiments exposing fish to 1.0% ethanol for up to 3 hr showed that the effect remained stable for this period of time. The thermoregulatory responses of fish are behavioral, and therefore relatively easy to observe and quantify. Ethanol produces a prompt, stable and reproducible depression of selected temperature in the goldfish. Because the temperature at which fish regulate is controlled by a central nervous system set point and not altered by effects on peripheral effector systems, it appears that ethanol may cause hypothermia in goldfish by directly acting to lower the set point.
154

Thermoresponsiveness of ventromedial hypothalamic (VMH) neurons to peripheral (scrotal) thermal stimulation

Li, Qiang 01 January 1996 (has links)
The ventromedial hypothalamic nucleus (VMH) is an important central effector site involved in activating brown adipose tissue (BAT) or non-shivering thermogenesis. VMH neurons have previously been shown to be thermally responsive to changes in local temperature of the preoptic area/anterior hypothalamus (PO/AH). However, the thermoresponsiveness of VMH neurons of room temperature acclimatized and cold acclimatized rats to peripheral thermal stimulation has not been tested. In this thesis, a series of studies was designed to determine the thermoresponsiveness of VMH neurons to peripheral (scrotal) thermal stimulation of rats. Extracelluiar VMH neuronal activity was recorded from urethane anaesthetized male Sprague-Dawley rats, which were acclimatized either to room temperature (21°C for 4 weeks) or to cold (4°C for 4 weeks) prior to testing, during scrotal cooling and heating with glass-micropipettes filled with 0.5 M sodium acetate containing 2% pontamine sky blue. The rats' colonic temperatures were kept at normothermia (37°C), or hypothermia (33-35°C) during scrotal thermal stimulation. In the room temperature acclimatized rats, VMH neurons were temperature responsive to scrotal heating and cooling and were classified as warm responsive (WRN), cold responsive (CRN) and temperature non-responsive neurons (TNRN), based on their thermal coefficients. The ratio of VMH WRNs and CRNs was similar to that of thermoresponsive neurons observed in other brain regions (eg, the PO/AH and thalamus). VMH WRNs and CRNs were further classified as biphasic or monophasic in nature according to their thermal responses to scrotal heating and cooling. VMH neurons sustained their thermoresponsiveness to repeated trials of scrotal thermal stimulation with colonic temperatures maintained at 37°C or when colonic temperatures were acutely lowered from 37°C to 35°C and 33°C. In addition, scrotal thermal signals specifically altered neuronal activity of VMH thermoresponsive neurons, as changes in EEG activity did not occur with changes in VMH neuronal activity. Scrotal thermal inputs were functionally shown to be transmitted via the medial preoptic nucleus (MPO) prior to reaching the VMH nucleus because thermoresponsive VMH neuronal activity was blocked with the pretreatment of lidocaine into the MPO. Scrotal heating or cooling to 21°C-acclimatized rats did not increase IBAT temperatures, inferring that scrotal cooling had not evoked IBAT thermogenesis in this group. In cold acclimatized (CA) rats, prolonged (over 2 hours) and transient localized scrotal cooling caused IBAT temperatures to increase, inferring that scrotal cooling activated BAT thermogenesis. Mean basal firing rates of all recorded VMH neurons of CA-groups significantly increased, compared to those of VMH neurons observed in room temperature acclimatized (RA) groups. More VMH CRNs than WRNs were recorded in the CA-group and the thermoresponsiveness (ie, thermal coefficient) of VMH CRNs significantly increased during localized scrotal cooling in the cold acclimatized group, compared to thermal coefficients of VMH CRNs of the RA-groups. (Abstract shortened by UMI.)
155

Core and bladder temperature gradient in critically ill adults : urine flow rate as a factor /

Fallis, Wendy M. January 2002 (has links)
Thesis (Ph. D.)--University of Washington, 2002. / Vita. Includes bibliographical references (leaves 111-120).
156

Heat transfer modeling during radiofrequency cardiac ablation in swine myocardium /

Bhavaraju, Naresh Chandra, January 2000 (has links)
Thesis (Ph. D.)--University of Texas at Austin, 2000. / Vita. Includes bibliographical references (leaves 113-118). Available also in a digital version from Dissertation Abstracts.
157

Cutaneous active vasodilation in humans : contribution of nitric oxide and vasoactive intestinal peptide /

Wilkins, Brad W., January 2003 (has links)
Thesis (Ph. D.)--University of Oregon, 2003. / Typescript. Includes vita and abstract. Includes bibliographical references (leaves 137-145). Also available for download via the World Wide Web; free to University of Oregon users.
158

REGULATION OF NONSHIVERING THERMOGENESIS IN BROWN ADIPOSE TISSUE

Frost, Susan Cooke January 1979 (has links)
No description available.
159

The association between the degree of leanness or obesity in children and the difference between their axillary and rectal temperatures

Jordan, Glenda Louise January 1981 (has links)
No description available.
160

THE ENVIRONMENTAL AND MUSCLE PHYSIOLOGY OF WINTER-ACTIVE AND WINTER-INACTIVE LIZARDS, SCELOPORUS JARROVI AND SCELOPORUS MAGISTER

Schwalbe, Cecil Robert January 1981 (has links)
Field observations indicated a difference in the ability to locomote at low body temperatures in two closely related species of lizards from very different habitats and with radically different seasonal behavior. I measured the critical thermal minimum (the body temperature at which a cooling lizard just loses the ability to right itself) in both species. The winter-active, montane Sceloporus jarrovi had a significantly lower critical thermal minimum in both summer and winter than the winter-hibernating, lowland S. magister. Critical thermal minima were significantly lower in winter than in summer for both species. To determine a physiological basis for these differences, I examined the activity of myosin ATPase, which plays the limiting role in the velocity of muscle contraction, and the energetics of muscle as reflected by high energy phosphate compounds. Microenvironmental conditions were correlated with behavior, constraints on winter activity, and muscle physiology. Ca²⁺-activated myosin ATPase activity in S. magister of valley bottoms is greater than that in the vertical rock-dwelling S. jarrovi. No seasonal acclimatization occurs in myosin ATPase activity in either species. Changes in the muscle metabolism of hibernating animals has been attributed to the lack of muscular contractions in the dormant animals. I measured levels of phosphorylated compounds in a hindlimb muscle from summer and winter lizards of both species. Significant seasonal changes occur in some of the phosphate compounds in both species even though, within a given season, respective levels of phosphorylated compounds are similar in both species. Phosphorylcreatine and total acid-soluble phosphate levels increased in winter animals of both species. Apparently the high levels of phosphorylcreatine in winter S. magister are not simply due to inactivity; winter-active S. jarrovi contain similar amounts. Seasonal cycling of phosphate compounds may relate more to parathyroid status than to muscle activity. Winter activity in S. jarrovi was site-specific and highly dependent on a favorable microclimate. Winter dormancy in S. magister apparently is not dictated by the severity of the microclimate nor physiological limitations of skeletal muscle, but may be strongly influenced by the thermal inertia of that relatively large species.

Page generated in 0.102 seconds