• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 15
  • 6
  • 5
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 32
  • 32
  • 21
  • 13
  • 12
  • 12
  • 11
  • 10
  • 9
  • 9
  • 8
  • 8
  • 8
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Development of the Design of Eccentrically Braced Frames with Replaceable Shear Links

Mansour, Nabil 23 February 2011 (has links)
In current design of steel eccentrically braced frames (EBFs), the yielding link is coupled with the floor beam. This often results in oversized link elements, which leads to over-designed structures and foundations. In addition, the beams are expected to sustain significant damage through repeated inelastic deformations under design level earthquakes, and thus the structure may require extensive repair or need to be replaced. These drawbacks can be mitigated by designing EBFs with replaceable shear links. Two different replaceable link types with alternate section profiles, connection configurations, welding details and intermediate stiffener spacing were tested. A total of 13 cyclic quasi-static full-scale cyclic tests were performed, which included tests on eccentrically braced frames with the replaceable shear links, to study their inelastic seismic performance. The links exhibited a very good ductile behaviour, developing stable and repeatable yielding. Additional inelastic rotation capacity can be achieved with bolted replaceable links when allowing bolt bearing deformations to occur. The on-site replaceability of the link sections is confirmed even in the presence of residual deformations of 0.5% drift.
12

Development of the Design of Eccentrically Braced Frames with Replaceable Shear Links

Mansour, Nabil 23 February 2011 (has links)
In current design of steel eccentrically braced frames (EBFs), the yielding link is coupled with the floor beam. This often results in oversized link elements, which leads to over-designed structures and foundations. In addition, the beams are expected to sustain significant damage through repeated inelastic deformations under design level earthquakes, and thus the structure may require extensive repair or need to be replaced. These drawbacks can be mitigated by designing EBFs with replaceable shear links. Two different replaceable link types with alternate section profiles, connection configurations, welding details and intermediate stiffener spacing were tested. A total of 13 cyclic quasi-static full-scale cyclic tests were performed, which included tests on eccentrically braced frames with the replaceable shear links, to study their inelastic seismic performance. The links exhibited a very good ductile behaviour, developing stable and repeatable yielding. Additional inelastic rotation capacity can be achieved with bolted replaceable links when allowing bolt bearing deformations to occur. The on-site replaceability of the link sections is confirmed even in the presence of residual deformations of 0.5% drift.
13

Validation of blast simulation models via drop-tower tests

Rydman, Joakim January 2018 (has links)
This study aims to validate a screw joint simulation model used by BAE Systems in LS-DYNA during blast simulations. It is important that the screw joint simulation model is physically correct, since the simulation results can influence major design decisions. The study provides a short overview on the subject of bolts and screws, material deformation and stress and strain in materials, of the finite element method (FEM) and on some specific numerical methods used in this study. BAE Systems started a validation project of the screw joint simulation model in 2015, but it was not finished due to other priorities. In this older project some drop-tower tests measuring the axial force in a screw joint were conducted. These old tests can now serve as validation data for the screw joint simulation model. The screw joint simulation model used by BAE Systems is dependent on a special kind of finite element formulation; a so called beam element. This study provides a finite element analysis on this simulation model, which is implemented through an established industry FEM solver called LS-DYNA. The validation of the screw joint simulation model is done against three drop-tower experiments performed at 900, 1000 and 1100mm drop height respectively. The drop-tower experiments were replicated in LS-DYNA, with a prescribed velocity on the falling parts rather than simulating a free fall and non-elastic impact. A comparison between the simulation model using beam elements, that is used by BAE Systems, and a similar simulation model using solid elements is presented as part of the validation. To make sure that the result of the study is confident, a local mesh convergence study and a study of the mass scaling numerical method in LS-DYNA is also presented. The results show that the screw joint simulation model using beam elements is valid according to the available experimental data. In one of the experiments, where the drop-test was performed twice, an average maximum force on the screw was measured to be 33.5+-4.8 kN. Simulations of the same case, under the same conditions, using beam elements resulted in a maximum force on the screw of 35.4 kN, well within the experimental result range. In the other two drop-tower experiments, the simulated results showed correlation considering the error sources in the simulation model and the statistical spread that is present in the experimental results. The simulation model using beam elements is also similar to the results using solid elements, which also indicates that the beam model is valid. All in all, it is shown that the beam model can be used to produce safe results that either overestimate or place the simulations of the axial force in the screw in the upper spread of the measurements.
14

Modelagem numérica de elementos tracionados em aço inoxidável com parafusos defasados / Numeric modelling of members under tension in stainless steel with alternate bolt.

André Tenchini da Silva 18 August 2009 (has links)
Atualmente, a utilização do aço inoxidável em elementos estruturais é considerada uma solução cara para os problemas da engenharia estrutural. Todavia, mudanças de atitudes dentro da construção civil, uma transição global para um desenvolvimento sustentável e redução em impactos ambientais têm seguramente provocado um aumento na utilização do aço inoxidável. As normas de projeto de aço inoxidável atuais são, em grande parte, baseadas em analogias assumidas com o comportamento de estruturas desenvolvidas com aço carbono. Todavia, o aço inoxidável apresenta quatro curvas não-lineares tensão versus deformação (tensão e compressão, paralela e perpendicular a laminação do material), sem patamar de escoamento e região de encruamento claramente definidos, modificando assim, o comportamento global das estruturas que o utilizam. Em elementos estruturais submetidos a forças axiais de tração, a ruptura da seção líquida representa um dos estados limites últimos a serem verificados. Com o objetivo de se avaliar a resistência a tração de elementos estruturais aparafusados em aço inoxidável S304, este trabalho apresenta um modelo numérico baseado no método dos elementos finitos através do programa Ansys (versão 11). A não-linearidade do material foi considerada através do critério de plastificação de Von Mises e curvas tensão versus deformação verdadeira. A não-linearidade geométrica foi introduzida no modelo através da Formulação de Lagrange atualizado. O modelo numérico foi calibrado com resultados experimentais obtidos em ensaios de laboratório, a partir de ligações aparafusadas alternadas rígidas, onde não se ocorre nenhuma rotação entre os membros, transferindo nenhum momento fletor, apenas esforço normal e cisalhante. / Currently, the use of stainless steel in structural elements is considered an extravagant solution to structural engineerings problems. However, changes in attitudes within civil construction, global transition to sustainable development and environmental impacts reduction have certainly caused an increase in the use of stainless steel. Today, the codes for design of stainless steel are largely based on assumed analogies with the behavior of structures developed with carbon steel. However, stainless steel present four non-linear tension versus strain curves (tension and compression, parallel and perpendicular to the lamination material) without yielding plateau and strain hardening zones clearly defined, thus changing the overall behavior of the structures that use it. In Structural elements subjected to axial forces of tension, the net section rupture usually represents one of its controlling ultimate limit states. In order to evaluate the tensile resistance of structural components bolted stainless steel S304, this work provides a numerical model based on the finite element method using the program ANSYS (version 11). The non-linear of the material was considered by the criterion of Von Mises and stress versus strain true curves. The geometric nonlinearity was introduced into the model through the formulation of Lagrange Updated. The numerical model was calibrated based on experimental results, from rigid alternate bolted connection, which do not occur any rotation among the members, transferring any bending moment, only normal and shear internal forces.
15

Modelagem numérica de elementos tracionados em aço inoxidável com parafusos defasados / Numeric modelling of members under tension in stainless steel with alternate bolt.

André Tenchini da Silva 18 August 2009 (has links)
Atualmente, a utilização do aço inoxidável em elementos estruturais é considerada uma solução cara para os problemas da engenharia estrutural. Todavia, mudanças de atitudes dentro da construção civil, uma transição global para um desenvolvimento sustentável e redução em impactos ambientais têm seguramente provocado um aumento na utilização do aço inoxidável. As normas de projeto de aço inoxidável atuais são, em grande parte, baseadas em analogias assumidas com o comportamento de estruturas desenvolvidas com aço carbono. Todavia, o aço inoxidável apresenta quatro curvas não-lineares tensão versus deformação (tensão e compressão, paralela e perpendicular a laminação do material), sem patamar de escoamento e região de encruamento claramente definidos, modificando assim, o comportamento global das estruturas que o utilizam. Em elementos estruturais submetidos a forças axiais de tração, a ruptura da seção líquida representa um dos estados limites últimos a serem verificados. Com o objetivo de se avaliar a resistência a tração de elementos estruturais aparafusados em aço inoxidável S304, este trabalho apresenta um modelo numérico baseado no método dos elementos finitos através do programa Ansys (versão 11). A não-linearidade do material foi considerada através do critério de plastificação de Von Mises e curvas tensão versus deformação verdadeira. A não-linearidade geométrica foi introduzida no modelo através da Formulação de Lagrange atualizado. O modelo numérico foi calibrado com resultados experimentais obtidos em ensaios de laboratório, a partir de ligações aparafusadas alternadas rígidas, onde não se ocorre nenhuma rotação entre os membros, transferindo nenhum momento fletor, apenas esforço normal e cisalhante. / Currently, the use of stainless steel in structural elements is considered an extravagant solution to structural engineerings problems. However, changes in attitudes within civil construction, global transition to sustainable development and environmental impacts reduction have certainly caused an increase in the use of stainless steel. Today, the codes for design of stainless steel are largely based on assumed analogies with the behavior of structures developed with carbon steel. However, stainless steel present four non-linear tension versus strain curves (tension and compression, parallel and perpendicular to the lamination material) without yielding plateau and strain hardening zones clearly defined, thus changing the overall behavior of the structures that use it. In Structural elements subjected to axial forces of tension, the net section rupture usually represents one of its controlling ultimate limit states. In order to evaluate the tensile resistance of structural components bolted stainless steel S304, this work provides a numerical model based on the finite element method using the program ANSYS (version 11). The non-linear of the material was considered by the criterion of Von Mises and stress versus strain true curves. The geometric nonlinearity was introduced into the model through the formulation of Lagrange Updated. The numerical model was calibrated based on experimental results, from rigid alternate bolted connection, which do not occur any rotation among the members, transferring any bending moment, only normal and shear internal forces.
16

Conception parasismique robuste de bâtiments à base d'assemblages boulonnés

Saranik, Mohammad 12 December 2011 (has links)
La procédure d’évaluation des performances des structures en génie civil soumis à des tremblements de terre implique le développement des modèles mathématiques et des procédures d’analyse dynamique non-linéaire pour estimer les réponses sismiques. Le comportement hystérétique des structures est connu pour être fortement dépendante du modèle de l’assemblage. Dans le cas de chargement cyclique, la plastification cyclique, le phénomène de fatigue oligocyclique et la détérioration du comportement dus à la dégradation de rigidité ont été jugées importantes. Cela éventuellement conduit à une grande incertitude dans les réponses d’une structure. Dans ce contexte, un modèle d’endommagement basé sur la fatigue hystérétique est développé pour évaluer la performance sismique des ossatures en acier avec des assemblages boulonnés à plaque d’extrémité. Le modèle développé est un modèle hystérétique dégradant basé sur l’indicateur de dommage par fatigue oligocyclique. Une étude expérimentale du comportement d’un assemblage boulonné à plaque d’extrémité est réalisée pour analyser les effets du comportement en fatigue oligocyclique et pour développer un modèle de prédiction de durée de vie. Les essais de fatigue ont été effectués en utilisant un pot vibrant. Les résultats des essais expérimentaux de fatigue seront utilisés pour déduire les paramètres de la fatigue qui sont nécessaires pour développer le modèle hystérétique de l’assemblage boulonné. L’analyse des dommages sismiques est l’un des problèmes les plus difficiles dans des structures grandes et complexes, particulièrement celles en ossature avec des assemblages boulonnés à plaque d’extrémité. L’existence de dommages structuraux dans une structure conduit à la modification des modes de vibration et les valeurs propres globaux sont généralement sensibles à l’ampleur des dégâts sismiques locaux dans des assemblages boulonnés. Dans ce travail, une analyse temporelle non-linéaire qui tient compte des modes et des fréquences non-linéaires a été proposée. Selon cette approche, les modes et les fréquences non-linéaires peuvent être déterminés par une procédure itérative qui repose sur la méthode de linéarisation équivalente. L’introduction de la notion des modes non-linéaires a permis d’étendre la méthode de synthèse modale linéaire aux cas non-linéaires afin d’obtenir la réponse dynamique des systèmes non-linéaires. Dans un autre contexte expérimental, cette thèse présente les résultats d’essais sur une table vibrante. L’objectif des essais expérimentaux est de comprendre le comportement inélastique des structures en acier soumis à des charges dynamiques. Par ailleurs, ces essais sont également destinés à étudier les changements dans les paramètres modaux dus au développement du comportement élasto-plastique et du dommage par fatigue oligocyclique des assemblages boulonnés. Une simulation numérique non-linéaire du système est effectuée sur la base du modèle développé et l’approche numérique proposée. Une comparaison des résultats obtenus à partir de l’analyse numérique et ceux des essais de table vibrante est présentée. Cependant, l’analyse des dommages pour les ossatures en acier sous excitations sismiques aléatoires exige l’application d’un algorithme adéquat. Un algorithme a été développé pour évaluer la performance sismique des ossatures en acier. En utilisant cet algorithme, l’influence de la fatigue oligocyclique sur le comportement des assemblages boulonnés à plaques d’extrémité peut être étudiée. / The performance assessment procedure of civil engineering structures subjected to earthquakes involves the development of mathematical models and nonlinear dynamic analysis procedures to estimate seismic responses. The hysteretic behavior of structures was known to be strongly dependent on the connection model. In the case of cyclic loading, cyclic hardening, low cycle fatigue phenomena and deterioration of the behavior due to stiffness degradation were found to be important. This eventually led to high uncertainty in the responses of system. In this context, a Fatigue Damage-Based Hysteretic model is developed to evaluate the seismic performance of steel moment-resisting frames with end-plate connections. The developed model is a degrading hysteretic model based on the low cycle fatigue damage index. An experimental study of the behavior of a end-plate bolted connection is performed for analyzing the effects of low cycle fatigue behavior and developing a model for predicting life of end-plate bolted connection. The fatigue tests were conducted using a shaker. The experimental fatigue results will be used to derive the fatigue parameters that will be used to develop the hysteretic model of the bolted connection. Analysis of seismic damage is one of the most challenging problems in large and complex structures, particularly those in steel moment-resisting frame with end-plate bolted connections. The existence of structural damage in an engineering structure leads to the modification of vibration modes and global eigenvalues are usually sensitive to the degree of local damage seismic in bolted connections. In this work, a nonlinear time history analysis which takes into account nonlinear modes and frequencies was adopted. According to this approach, the nonlinear modes and frequencies can be determined by an iterative procedure which based on the method of equivalent linearization. The introduction of the notation of nonlinear modes permits an extension of the method of linear modal synthesis to nonlinear cases in order to obtain the dynamic response of nonlinear systems. In another experimental context, this thesis presents the results from shaking table tests of a two-story steel frame with end-plate bolted connections. The aim of the experimental tests is to understand the inelastic behavior of steel frame structures subjected to dynamic loads. Moreover, the purpose of these tests is also to study the changes in modal parameters due to the development of elasto-plastic behavior and low cycle fatigue damage in steel frame connections. A nonlinear numerical simulation of the system is performed based on the developed model and the proposed numerical approach. A comparison of the results obtained from numerical analysis and those of shake table testing is presented. However, the damage analysis for steel frames under random seismic excitations requires the application of an adequate algorithm. An algorithm was developed to assess the seismic performance of steel frames with bolted connections. Using this algorithm, the influence of low cycle fatigue damage in the behavior of end plate bolted connections can be studied.
17

Skleník / Glasshouse

Sejbalová, Kateřina January 2019 (has links)
This master thesis deals with design of a load-bearing steel structure, i tis located in ZOO Zlín areal. The building serves as a glasshouse. It is a single-storey building with circle plan, 39,04 m diameter and 15,63 m height. Space construction follows spherical cap of a sphere with diameter 40 m. Variant A building is design as a fuller dome. Variant B building consists of hexagons, which are getting smaller with height, at the upper part is the hexagonal geometry cancelled and geometry made from triangles follows. This thesis contains design of a pedestrian bridge, which carries all technical loads. The thesis contains static report of the beams a design of main joints.
18

Administrativní budova / Administration building

Ondruš, Petr January 2017 (has links)
The subject of this diploma thesis is design and check the steel construction of the office building in Valašské Meziříčí. Floor plan dimensions of building are 55,0 x 30,0 m. The length of building gradually increases with each floor. The building has eight floors. Overall height is 33,6 m. The building ceilings made of composite steel and concrete structure. The construction in both directions is stabilized by vertical bracings. The building adjoins a smaller building with shops. Floor plan dimensions of that building are 31,5 x 21,0 m and building height to the top of the truss girder including cladding is 17,5 m.
19

Konstrukce sportovní haly v Pardubicích / The structure of sport hall in Pardubice

Holubinskyi, Roman January 2022 (has links)
The subject of the diploma thesis is design and structural analysis of the sports hall. The building is located in Pardubice city. The dimensions of a floor plan are 45,5 m x 30,0 m, the height is 13,0 m. There is a sport facilities unit adjusted to the construction. The dimension of such an object is 39,0 m x 10,0 m. The load-bearing structure consists of truss girders, which are pin-supported by fixed columns. The distance between main trusses is 6,5 m. The supporting part of the roof deck consists of solid-purlins. Space stability is ensured by cross bracing and longitudinal bracing. All bars are rolled steel profiles and are designed according to current ČSN EN standards. Steel S355 is used as the construction material. In this work is processed a structural design report of main elements including connections and drawing documentation.
20

Zur Warmlochformung in Textil-Thermoplast-Strukturen – Technologie, Phänomenologie, Modellierung

Kupfer, Robert 09 December 2021 (has links)
In vielen Bereichen des Leichtbaus haben sich Bolzen- und Nietverbindungen als zuverlässige und effiziente Verbindungstechniken für Mischbauweisen mit Faserverbunden etabliert. Diese Verbindungen bieten im Zusammenhang mit textilverstärkten Thermoplasten zusätzlich das Potential, die technologiebedingt erforderlichen Löcher durch warmlochformende Verfahren einzubringen. Im Gegensatz zu den klassischen Verfahren der Lochherstellung (z. B. Bohren) werden die lasttragenden Fasern hierbei nicht durchtrennt, sondern vorteilhafterweise seitlich in das Lochnahfeld verschoben. In dieser Arbeit werden die technologischen, experimentellen und theoretischen Voraussetzungen für die systematische Analyse dieser Lochformungstechnologie geschaffen und darauf aufbauend ihr Einsatzpotential für automatisierte Fertigungsprozesse aufgezeigt. / In many areas of lightweight engineering, bolted and riveted connections are established as reliable and efficient joining techniques for multi-material design with composites. In combination with textile-reinforced thermoplastics, these joints additionally offer the potential of introducing the required holes by warm-forming processes. In contrast to the classic methods of hole manufacturing (e.g. drilling), the load-bearing fibers are not cut, but advantageously shifted aside into the surrounding laminate. In this work, the technological, experimental and theoretical basis for the systematic analysis of this hole moulding technology are provided and, based on this, its application potential for automated manufacturing processes is demonstrated.

Page generated in 0.1022 seconds