• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 1
  • 1
  • Tagged with
  • 14
  • 14
  • 10
  • 10
  • 9
  • 7
  • 7
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Development of Cold Gas Dynamic Spray Nozzle and Comparison of Oxidation Performance of Bond Coats for Aerospace Thermal Barrier Coatings at Temperatures of 1000°C and 1100°C

Roy, Jean-Michel L. 08 February 2012 (has links)
The purpose of this research work was to develop a nozzle capable of depositing dense CoNiCrAlY coatings via cold gas dynamic spray (CGDS) as well as compare the oxidation performance of bond coats manufactured by CGDS, high-velocity oxy-fuel (HVOF) and air plasma spray (APS) at temperatures of 1000°C and 1100°C. The work was divided in two sections, the design and manufacturing of a CGDS nozzle with an optimal profile for the deposition of CoNiCrAlY powders and the comparison of the oxidation performance of CoNiCrAlY bond coats. Throughout this work, it was shown that the quality of coatings deposited via CGDS can be increased by the use of a nozzle of optimal profile and that early formation of protective α-Al2O3 due to an oxidation temperature of 1100°C as opposed to 1000°C is beneficial to the overall oxidation performance of CoNiCrAlY coatings.
12

Development of Cold Gas Dynamic Spray Nozzle and Comparison of Oxidation Performance of Bond Coats for Aerospace Thermal Barrier Coatings at Temperatures of 1000°C and 1100°C

Roy, Jean-Michel L. January 2012 (has links)
The purpose of this research work was to develop a nozzle capable of depositing dense CoNiCrAlY coatings via cold gas dynamic spray (CGDS) as well as compare the oxidation performance of bond coats manufactured by CGDS, high-velocity oxy-fuel (HVOF) and air plasma spray (APS) at temperatures of 1000°C and 1100°C. The work was divided in two sections, the design and manufacturing of a CGDS nozzle with an optimal profile for the deposition of CoNiCrAlY powders and the comparison of the oxidation performance of CoNiCrAlY bond coats. Throughout this work, it was shown that the quality of coatings deposited via CGDS can be increased by the use of a nozzle of optimal profile and that early formation of protective α-Al2O3 due to an oxidation temperature of 1100°C as opposed to 1000°C is beneficial to the overall oxidation performance of CoNiCrAlY coatings.
13

Struktura a vlastnosti tepelných bariér typu YSZ nanesených na krycí vrstvy CoNiCrAlY přetavené elektronovým paprskem / Microstructure and properties of YSZ thermal barier coatings deposited onto CoNiCrAlY bond coats remelted by electron beam

Slavíková, Barbora January 2019 (has links)
The master thesis is dealing with characterization of the structure and properties of the YSZ thermal barrier coating deposited by water hybrid plasma spray technology on the CoNiCrAlY bond coats modified by using electron beam and vacuum annealing. Deposition of the bond coats was performed via high velocity oxy-fuel technology and cold spray. In case of experimental evaluation, the microstructure and chemical composition of the ceramic top coat deposited with powder and suspension feedstock was analyzed. The same analysis procedure was used also for bond coats after electron beam remelting by using two sets of parameters. Furthermore, the changes in microstructure and chemical composition of the remelted and annealed bond coats was evaluated. Eventually, the micromechanical properties of the top coats and the bond coats were measured. The ceramic top coats deposited with powder feedstock exhibited the structure composed by splats, while the top coats deposited in form of suspension showed fine structure with columnar grains. The dendritic structure was observed on remelted bond coats. The annealing process had an influence on the structure in form of coarsened phases and the chemical composition was changed due to diffusion of the elements.
14

Computational Modeling of Failure in Thermal Barrier Coatings under Cyclic Thermal Loads

Bhatnagar, Himanshu 04 February 2009 (has links)
No description available.

Page generated in 0.0597 seconds