• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 1
  • Tagged with
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Restoration of Aluminum Aerospace Parts and Coatings Using Cold Gas Dynamic Spraying

MacDonald, Daniel January 2014 (has links)
The majority of the structural weight of many common commercial aircrafts is composed of high strength aluminum alloys. The properties of high performance aluminum alloys such as a high strength to weight ratio (specific strength), ease of recycling, crash energy absorption capacity, and corrosion resistance make them ideal for use in the aerospace field. As a result of the high performance nature of the parts and specific properties of the materials, manufacturing requires intricate casting, precision machining, and specific heat treatments – which results in expensive components. As a result of its excellent corrosion resistance properties, pure aluminum coatings are commonly used in the aerospace field for corrosion protection of steel, aluminum alloy components, and titanium alloy components. The common method to deposit these coatings is called ion vapour deposition (IVD). These IVD aluminum coatings provide the coating adhesion, coverage, thickness, and corrosion resistance required to protect the part. The present study was motivated by the potential use of the cold gas dynamic spray (CGDS) process to repair a) damaged aluminum alloy aerospace parts and b) damaged pure aluminum IVD coatings. The primary research objective was to successfully produce these repairs using commercially available aluminum alloy feedstock powders deposited with commercially available CGDS equipment. This work was treated as prequalification work for The Boeing Company to commercialize this process and therefore the repairs aim to meet the same standards (military and industrial) required of the original aluminum alloy parts and IVD aluminum coatings. The use of CGDS was shown in this research to be a very promising as a process for the restoration of aluminum alloy aerospace components. The adhesion strength of the repaired aluminum components was found to be well above the accepted range for thermally sprayed repairs according to industrial standards. The repairs were subjected to a highly corrosive environment and showed only minor pitting. These sites could be reduced in the future with improved machining techniques and attention to surface detail prior to exposure to the salt fog. The only requirement that the repaired components did not meet was for the wear properties of the anodized layer, measured thought Taber abrasion testing. The results of this test, at times, approached the desired values, and it is believed that, in the future, the quality and consistency of the coatings could be improved and the test would meet industrial standards. The results of this research show that the use of CGDS as a process for the restoration of damaged aluminum IVD coatings is possible and is a promising alternative to conventional methods. The CGDS coatings were scrutinized to the same level as required of IVD coatings when they replaced toxic cadmium coatings in the late 1980s. The coating adhesion, demonstrated through glass bead abrasion and strip rupture testing, was shown to meet the current industrial standards. The corrosion testing of the repairs resulted in no visible red rust of the steel components, even when the steel was exposed.
2

Reakční syntéza objemových intermetalických materiálů z kineticky nanášených depozitů / Reaction synthesis of bulk intermetallic materials from kinetic spraying deposits

Stejskal, Pavel January 2013 (has links)
This work deals with issues of preparation of intermetallics based on iron, nickel and titanium aluminides. It works with an idea of preparation of bulk material by reaction synthe-sis from kinetic spraying deposits by cold spray. Theoretical part is concerned with phases and compounds of these aluminides for structural applications, their characteristics and present fabrication. In experimental part there are studied microstructures created by annealing of deposits.
3

Development of Cold Gas Dynamic Spray Nozzle and Comparison of Oxidation Performance of Bond Coats for Aerospace Thermal Barrier Coatings at Temperatures of 1000°C and 1100°C

Roy, Jean-Michel L. 08 February 2012 (has links)
The purpose of this research work was to develop a nozzle capable of depositing dense CoNiCrAlY coatings via cold gas dynamic spray (CGDS) as well as compare the oxidation performance of bond coats manufactured by CGDS, high-velocity oxy-fuel (HVOF) and air plasma spray (APS) at temperatures of 1000°C and 1100°C. The work was divided in two sections, the design and manufacturing of a CGDS nozzle with an optimal profile for the deposition of CoNiCrAlY powders and the comparison of the oxidation performance of CoNiCrAlY bond coats. Throughout this work, it was shown that the quality of coatings deposited via CGDS can be increased by the use of a nozzle of optimal profile and that early formation of protective α-Al2O3 due to an oxidation temperature of 1100°C as opposed to 1000°C is beneficial to the overall oxidation performance of CoNiCrAlY coatings.
4

Development of Cold Gas Dynamic Spray Nozzle and Comparison of Oxidation Performance of Bond Coats for Aerospace Thermal Barrier Coatings at Temperatures of 1000°C and 1100°C

Roy, Jean-Michel L. 08 February 2012 (has links)
The purpose of this research work was to develop a nozzle capable of depositing dense CoNiCrAlY coatings via cold gas dynamic spray (CGDS) as well as compare the oxidation performance of bond coats manufactured by CGDS, high-velocity oxy-fuel (HVOF) and air plasma spray (APS) at temperatures of 1000°C and 1100°C. The work was divided in two sections, the design and manufacturing of a CGDS nozzle with an optimal profile for the deposition of CoNiCrAlY powders and the comparison of the oxidation performance of CoNiCrAlY bond coats. Throughout this work, it was shown that the quality of coatings deposited via CGDS can be increased by the use of a nozzle of optimal profile and that early formation of protective α-Al2O3 due to an oxidation temperature of 1100°C as opposed to 1000°C is beneficial to the overall oxidation performance of CoNiCrAlY coatings.
5

Development of Cold Gas Dynamic Spray Nozzle and Comparison of Oxidation Performance of Bond Coats for Aerospace Thermal Barrier Coatings at Temperatures of 1000°C and 1100°C

Roy, Jean-Michel L. 08 February 2012 (has links)
The purpose of this research work was to develop a nozzle capable of depositing dense CoNiCrAlY coatings via cold gas dynamic spray (CGDS) as well as compare the oxidation performance of bond coats manufactured by CGDS, high-velocity oxy-fuel (HVOF) and air plasma spray (APS) at temperatures of 1000°C and 1100°C. The work was divided in two sections, the design and manufacturing of a CGDS nozzle with an optimal profile for the deposition of CoNiCrAlY powders and the comparison of the oxidation performance of CoNiCrAlY bond coats. Throughout this work, it was shown that the quality of coatings deposited via CGDS can be increased by the use of a nozzle of optimal profile and that early formation of protective α-Al2O3 due to an oxidation temperature of 1100°C as opposed to 1000°C is beneficial to the overall oxidation performance of CoNiCrAlY coatings.
6

Development of Cold Gas Dynamic Spray Nozzle and Comparison of Oxidation Performance of Bond Coats for Aerospace Thermal Barrier Coatings at Temperatures of 1000°C and 1100°C

Roy, Jean-Michel L. January 2012 (has links)
The purpose of this research work was to develop a nozzle capable of depositing dense CoNiCrAlY coatings via cold gas dynamic spray (CGDS) as well as compare the oxidation performance of bond coats manufactured by CGDS, high-velocity oxy-fuel (HVOF) and air plasma spray (APS) at temperatures of 1000°C and 1100°C. The work was divided in two sections, the design and manufacturing of a CGDS nozzle with an optimal profile for the deposition of CoNiCrAlY powders and the comparison of the oxidation performance of CoNiCrAlY bond coats. Throughout this work, it was shown that the quality of coatings deposited via CGDS can be increased by the use of a nozzle of optimal profile and that early formation of protective α-Al2O3 due to an oxidation temperature of 1100°C as opposed to 1000°C is beneficial to the overall oxidation performance of CoNiCrAlY coatings.

Page generated in 0.0165 seconds