Spelling suggestions: "subject:"hondeklip model"" "subject:"bandslip model""
1 |
Modelling of FRP-concrete interfacial bond behaviourAn, Feng-Chen January 2015 (has links)
Externally bonding of fibre-reinforced polymer (FRP) strips or sheets has become a popular strengthening method for reinforced concrete structures over the last two decades. For most such strengthened concrete beams and slabs, the failure is at or near the FRP-concrete interface due to FRP debonding. The objective of this thesis is to develop a deeper understanding of the debonding behaviour of the FRP-concrete interface through mesoscale finite element simulation. Central to the investigation is the use of the concrete damaged plasticity (CDP) model for modelling the concrete. The FRP is treated as an elastic material. The numerical simulation is focused on the single shear test of FRP-concrete bonded joints. This problem is known to be highly nonlinear and has many difficulties in achieving a converged solution using the standard static loading procedures. A dynamic loading procedure is applied in this research and various parameters such as time step, loading rate etc. are investigated. In particular, the effect of the damping ratio is investigated in depth and an appropriate selection is recommended for solving such problems. It has been identified that the concrete damage model can have a significant effect on the numerical predictions in the present problem. Various concrete empirical damage models are assessed using cyclic test data and simulation of the single shear test of the FRP-concrete bonded joint and it is proposed that the Birtel and Mark’s (2006) model is the most appropriate one for use in the present problem. Subsequently, the effects of other aspects of the concrete behaviour on the FRP-concrete bond behaviour are investigated. These include the tensile fracture energy, compression strain energy and different concrete compression stress-strain models. These leads to the conclusion that the CEBFIP1990 model is the most appropriate one for the problem. An important issue for recognition is that the actual behaviour of the FRP-concrete bonded joints is three dimensional (3D), but most numerical simulations have treated the problem as two dimensional (2D) which has a number of imitations. True 3D simulation is however very expensive computationally and impractical. This study proposes a simple procedure for modelling the joint in 2D with the 3D behaviour properly considered. Numerical results show that the proposed method can successfully overcome the limitations of the traditional 2D simulation method. The above established FE model is then applied to simulate a large number of test specimens. The bond stress-slip relationship is extracted from the mesoscale FE simulation results. An alternative model is proposed based on these results which is shown to be advantageous compared with existing models. This new model provides the basis for further investigation of debonding failures in FRP strengthened concrete structures in the future.
|
2 |
Structural Behavior of Reinforced Concrete Elements and Subassemblies under Fire Conditions / 鉄筋コンクリート部材および部分架構の火災時構造挙動Mohammad, Mahdi Raouffard 26 March 2018 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(工学) / 甲第21066号 / 工博第4430号 / 新制||工||1688(附属図書館) / 京都大学大学院工学研究科建築学専攻 / (主査)教授 西山 峰広, 教授 原田 和典, 教授 河野 広隆 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DFAM
|
3 |
Bond behaviors between nano-engineered concrete and steel barsWang, X., Dong, S., Ashour, Ashraf, Ding, S., Han, B. 14 July 2021 (has links)
Yes / This paper investigated the bond characteristics between eight types of nanofillers modified reactive powder concrete (RPC) and plain steel bars, aiming to explore the modifying mechanisms and establish a bond-slip relationship model for nanofillers modified RPC and steel bar interface. The experimental results indicated that the incorporation of nanofillers can increase the bond strength and reduce the slip between RPC and plain steel bars. It was shown that a 2.15 MPa/20.5% of absolute/relative increase in cracking bond strength, a 1.25 MPa/10.3% of absolute/relative increase in ultimate bond strength, a 2.35 MPa/22.4% of absolute/relative increase in residual bond strength, a 0.592 mm/56.5% of absolute/relative reduction in ultimate bond slip, and a 1.779 mm/52.1% of absolute/relative reduction in residual bond slip were the best achieved due to the addition of various nanofillers. The enhancement of nanofillers on RPC-steel bar interface has been mainly attributed to RPC microstructure improvement, optimization of intrinsic compositions, and elimination of defects in the interface, especially the underside near steel bar, due to the nano-core effect of nanofillers enriched in the interface. In addition, the bond-slip relationship of nanofillers modified RPC-steel bar interface can be accurately described by the proposed model considering an initial branch. / The authors would like to thank the funding offered by the National Science Foundation of China (51978127 and 51908103), and the Fundamental Research Funds for the Central Universities (DUT21RC(3)039).
|
4 |
Experimental And Numerical Investigations On Bond Durability Of Cfrp Strengthened Concrete Members Subjected To Environmental ExposureAl-Jelawy, Haider 01 January 2013 (has links)
Fiber reinforced polymer (FRP) composites have become an attractive alternative to conventional methods for external-strengthening of civil infrastructure, particularly as applied to flexural strengthening of reinforced concrete (RC) members. However, durability of the bond between FRP composite and concrete has shown degradation under some aggressive environments. Although numerous studies have been conducted on concrete members strengthened with FRP composites, most of those studies have focused on the degradation of FRP material itself, relatively few on bond behavior under repeated mechanical and environmental loading. This thesis investigates bond durability under accelerated environmental conditioning of two FRP systems commonly employed in civil infrastructure strengthening: epoxy and polyurethane systems. Five environments were considered under three different conditioning durations (3 months, 6 months, and 1 year). For each conditioning environment and duration (including controls), the following were laboratory tested: concrete cylinders, FRP tensile coupons, and FRP-strengthened concrete flexural members. Numerical investigations were performed using MSC MARC finite element software package to support the outcomes of durability experimental tests. Precise numerical studies need an accurate model for the bond between FRP and concrete, a linear brittle model is proposed in this work that is calibrated based on nonlinear regression of existing experimental lap shear data. Results of tensile tests on FRP coupons indicate that both epoxy and polyurethane FRP systems do not degrade significantly under environmental exposure. However, flexural tests on the FRP strengthened concrete beams indicate that bond between FRP and concrete shows significant degradation, especially for aqueous exposure. Moreover, a protective coating suppresses the measured degradation. Also, experimental load-displacement curves for control beams show excellent agreement with numerical load-displacement curves obtained using the proposed bond iii model. Finally, a bond-slip model is predicted for concrete leachate conditioned beams by matching load-displacement curves for those beams with numerical load-displacement curves.
|
5 |
Prise en compte de la liaison acier béton dans le comportement d’éléments de structure en béton armé / Development of steel-concrete interface model for structural elementsTurgut, Can 14 December 2018 (has links)
Le comportement de l’interface acier-béton a une grande importance lorsque la fissuration des structures en béton armé est étudiée. Une approche par éléments finis a été proposée par (Torre-Casanova, 2013) et (Mang, 2016) pour représenter l'interface acier-béton dans les simulations de structures à grandes dimensions Le modèle proposé permet de calculer le glissement tangentiel entre l'acier et le béton. L’objectif de cette étude est d’améliorer ce modèle initial pour le rendre plus efficace et plus représentatif. Le document est découpé en trois parties : 1) Le modèle initial de liaison est évalué. Puis amélioré tant en chargement monotone qu’alterné. Le nouveau modèle est validé par plusieurs applications numériques. 2) L'effet de confinement est implémenté dans le modèle de liaison acier-béton. L'effet sur le comportement structural du confinement actif est étudié en utilisant le nouveau modèle. A partir des simulations proposées, il est montré, par l’utilisation du nouveau modèle, que l’effet de confinement actif peut jouer un rôle sur les comportements monotone que cyclique. 3) L'effet goujon est étudié avec le nouveau modèle liaison acier-béton. Deux campagnes expérimentales différentes sont simulées avec différents modelés de renforts (1D barre et poutre) et d’interface (liaison acier-béton et liaison parfaite). Les résultats montrent que le nouveau modèle de liaison acier-béton permet de mieux reproduire les résultats expérimentaux par rapport au modèle de liaison parfaite aux échelles globale et locale. / In numerical applications of reinforced concrete structures, the steel-concrete interface behavior has a vital importance when the cracking properties are investigated. A finite element approach for the steel-concrete interface to be used in large-scale simulations was proposed by (Torre-Casanova, 2013) and (Mang, 2016). It enables to calculate the slip between the steel and concrete in the tangential direction of the interface element representation. The aim is here to improve the initial bond-slip model to be more efficient and more representative. The document is divided into three parts: 1) The existing bond-slip model is evaluated. The bond-slip model is then improved by considering transversal and irreversible bond behaviors under alternative loads. The new bond-slip model is validated with several numerical applications. 2) Confinement effect is implemented in the bond-slip model to capture the effect of external lateral pressure. According to the performed numerical applications, it is demonstrated how the active confinement can play a role, through the steel-concrete bond, during monotonic and cyclic loading cases. 3) Dowel action is finally investigated with the new bond-slip model. Two different experimental campaigns (Push-off tests and four-point bending tests) are reproduced with different reinforcement (1D truss and beam) and interface (new bonds-slip and perfect bond) models. The results show that the proposed simulation strategy including the bond slip model enables to reproduce experimental results by predicting global (force-displacement relation) and local behaviors (crack properties) of the reinforced concrete structures under shear loading better than the perfect bond assumption which is commonly used in the industrial applications.
|
Page generated in 0.0599 seconds