• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 13
  • 7
  • 4
  • 1
  • Tagged with
  • 31
  • 31
  • 16
  • 10
  • 8
  • 8
  • 8
  • 7
  • 6
  • 6
  • 6
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Boolean networks as modeling framework

Greil, Florian 29 July 2022 (has links)
In a network, the components of a given system are represented as nodes, the interactions are abstracted as links between the nodes. Boolean networks refer to a class of dynamics on networks, in fact it is the simplest possible dynamics where each node has a value 0 or 1. This allows to investigate extensively the dynamics both analytically and by numerical experiments. The present article focuses on the theoretical concept of relevant components and their immediate application in plant biology. References for more in-depth treatment of the mathematical details are also given.
22

Machine Learning for Exploring State Space Structure in Genetic Regulatory Networks

Thomas, Rodney H. 01 January 2018 (has links)
Genetic regulatory networks (GRN) offer a useful model for clinical biology. Specifically, such networks capture interactions among genes, proteins, and other metabolic factors. Unfortunately, it is difficult to understand and predict the behavior of networks that are of realistic size and complexity. In this dissertation, behavior refers to the trajectory of a state, through a series of state transitions over time, to an attractor in the network. This project assumes asynchronous Boolean networks, implying that a state may transition to more than one attractor. The goal of this project is to efficiently identify a network's set of attractors and to predict the likelihood with which an arbitrary state leads to each of the network’s attractors. These probabilities will be represented using a fuzzy membership vector. Predicting fuzzy membership vectors using machine learning techniques may address the intractability posed by networks of realistic size and complexity. Modeling and simulation can be used to provide the necessary training sets for machine learning methods to predict fuzzy membership vectors. The experiments comprise several GRNs, each represented by a set of output classes. These classes consist of thresholds τ and ¬τ, where τ = [τlaw,τhigh]; state s belongs to class τ if the probability of its transitioning to attractor 􀜣 belongs to the range [τlaw,τhigh]; otherwise it belongs to class ¬τ. Finally, each machine learning classifier was trained with the training sets that was previously collected. The objective is to explore methods to discover patterns for meaningful classification of states in realistically complex regulatory networks. The research design took a GRN and a machine learning method as input and produced output class < Ατ > and its negation ¬ < Ατ >. For each GRN, attractors were identified, data was collected by sampling each state to create fuzzy membership vectors, and machine learning methods were trained to predict whether a state is in a healthy attractor or not. For T-LGL, SVMs had the highest accuracy in predictions (between 93.6% and 96.9%) and precision (between 94.59% and 97.87%). However, naive Bayesian classifiers had the highest recall (between 94.71% and 97.78%). This study showed that all experiments have extreme significance with pvalue < 0.0001. The contribution this research offers helps clinical biologist to submit genetic states to get an initial result on their outcomes. For future work, this implementation could use other machine learning classifiers such as xgboost or deep learning methods. Other suggestions offered are developing methods that improves the performance of state transition that allow for larger training sets to be sampled.
23

Interações gênicas usando redes booleanas limiarizadas modeladas como um problema de satisfação de restrições / Gene interactions using thresholded boolean networks modeled as a constraint satsfaction problem

Andrade, Tales Pinheiro de 03 April 2012 (has links)
As reações químicas que resultam da expressão de genes são complexas e ainda não são total- mente compreendidas. Sabe-se que os genes enviam, recebem, e processam informações formando uma complexa rede de comunicação, mas a arquitetura e dinâmica destas redes não são totalmente conhecidas. Dessa forma, um problema importante é determinar como os genes se relacionam dentro da célula. Esse processo de determinar o relacionamento entre os genes é conhecido como inferência de redes gênicas. Uma das formas para representar o relacionamento entre os genes é usar modelos matemáticos e computacionais de Redes Gênicas. Em especial, um dos modelos de grande interesse é o de Redes Booleanas (BN - do inglês Boolean Networks), no qual os genes podem assumir dois estados, ativo ou inativo, se estão, respectivamente, expressos ou não. Estes estados podem variar ao longo do tempo, dependendo de como os genes se relacionam. Nosso interesse está em estudar um caso particular deste modelo, conhecido como Redes Booleanas Limiarizadas, onde apenas uma classe de funções booleanas é utilizada para construir as BNs. Para inferir as Redes Booleanas Limiarizadas, usamos um algoritmo constituído de dois passos. Primeiro, usamos o arcabouço do Problema de Satisfação de Restrições (CSP - do inglês Constraint Satisfaction Problem) para inferir conjuntos de soluções consistentes com uma dada série temporal de um conjunto de genes. Em seguida analisamos o comportamento dinâmico das soluções encon- tradas , filtrando conjuntos de soluções de maior interesse para testes práticos em laboratório. Usando o arcabouço do CSP, construímos um solver, usando a biblioteca Gecode,1 para inferência de redes consistentes, usando como entrada uma série temporal oriunda de dados de microarrays. Em seguida, através da simulação da dinâmica de uma amostra das redes encontradas no passo anterior, fomos capazes de determinar algumas restrições interessantes para filtrar o conjunto de redes. Aplicamos o nosso método para três conjuntos de dados: dois artificiais, e para validação, usamos uma série temporal de uma rede artificial conhecida na literatura. Com isso fomos capazes de inferir conjuntos de redes gênicas de possível interesse para testes em laboratório. / The chemical reactions that result in gene expression are complex and not yet fully understood. It is known that genes send, receive and process information to form a complex network of com- munication, but the architecture and dynamics of these networks are not fully known. Thus, one major problem is to determine how genes are linked within the cell. This process of determining the relationship between genes is known as inference of genetic networks. One way to represent the relationship between genes is to use mathematical and computer models of genetic networks. In particular, one of the models of great interest are Boolean Networks (BN), in which genes can take two states, active or inactive, if they are, respectively, expressed or not. These states may vary over time, depending on how genes are related. Our interest is in studying a case of this particular model, known as thresholded Boolean networks, where only one class of Boolean functions is used to build the GNs. To infer the thresholded Boolean networks, we use an algorithm that consists of two steps. First, we use the framework of Constraint Satisfaction Problem (CSP) to infer sets of solutions consistent with a time series of a given set of genes. Then analyze the dynamic behavior of the solutions, filtering sets of solutions with interest for practical tests in the laboratory. Using the framework of the CSP, we constructed a solver, using the library Gecode, 2 for in- ference of consistent networks, using as input a time series arising from microarrays data. Then, by simulating the dynamics of a sample of networks found in the previous step, we were able to determine some interesting constraints to filter the set of networks. We apply our method to three datasets: two artificial, and for validation, we use a time series of an artificial network known from literature. Thus we were able to infer genetic networks sets of possible interest for laboratory tests.
24

Interações gênicas usando redes booleanas limiarizadas modeladas como um problema de satisfação de restrições / Gene interactions using thresholded boolean networks modeled as a constraint satsfaction problem

Tales Pinheiro de Andrade 03 April 2012 (has links)
As reações químicas que resultam da expressão de genes são complexas e ainda não são total- mente compreendidas. Sabe-se que os genes enviam, recebem, e processam informações formando uma complexa rede de comunicação, mas a arquitetura e dinâmica destas redes não são totalmente conhecidas. Dessa forma, um problema importante é determinar como os genes se relacionam dentro da célula. Esse processo de determinar o relacionamento entre os genes é conhecido como inferência de redes gênicas. Uma das formas para representar o relacionamento entre os genes é usar modelos matemáticos e computacionais de Redes Gênicas. Em especial, um dos modelos de grande interesse é o de Redes Booleanas (BN - do inglês Boolean Networks), no qual os genes podem assumir dois estados, ativo ou inativo, se estão, respectivamente, expressos ou não. Estes estados podem variar ao longo do tempo, dependendo de como os genes se relacionam. Nosso interesse está em estudar um caso particular deste modelo, conhecido como Redes Booleanas Limiarizadas, onde apenas uma classe de funções booleanas é utilizada para construir as BNs. Para inferir as Redes Booleanas Limiarizadas, usamos um algoritmo constituído de dois passos. Primeiro, usamos o arcabouço do Problema de Satisfação de Restrições (CSP - do inglês Constraint Satisfaction Problem) para inferir conjuntos de soluções consistentes com uma dada série temporal de um conjunto de genes. Em seguida analisamos o comportamento dinâmico das soluções encon- tradas , filtrando conjuntos de soluções de maior interesse para testes práticos em laboratório. Usando o arcabouço do CSP, construímos um solver, usando a biblioteca Gecode,1 para inferência de redes consistentes, usando como entrada uma série temporal oriunda de dados de microarrays. Em seguida, através da simulação da dinâmica de uma amostra das redes encontradas no passo anterior, fomos capazes de determinar algumas restrições interessantes para filtrar o conjunto de redes. Aplicamos o nosso método para três conjuntos de dados: dois artificiais, e para validação, usamos uma série temporal de uma rede artificial conhecida na literatura. Com isso fomos capazes de inferir conjuntos de redes gênicas de possível interesse para testes em laboratório. / The chemical reactions that result in gene expression are complex and not yet fully understood. It is known that genes send, receive and process information to form a complex network of com- munication, but the architecture and dynamics of these networks are not fully known. Thus, one major problem is to determine how genes are linked within the cell. This process of determining the relationship between genes is known as inference of genetic networks. One way to represent the relationship between genes is to use mathematical and computer models of genetic networks. In particular, one of the models of great interest are Boolean Networks (BN), in which genes can take two states, active or inactive, if they are, respectively, expressed or not. These states may vary over time, depending on how genes are related. Our interest is in studying a case of this particular model, known as thresholded Boolean networks, where only one class of Boolean functions is used to build the GNs. To infer the thresholded Boolean networks, we use an algorithm that consists of two steps. First, we use the framework of Constraint Satisfaction Problem (CSP) to infer sets of solutions consistent with a time series of a given set of genes. Then analyze the dynamic behavior of the solutions, filtering sets of solutions with interest for practical tests in the laboratory. Using the framework of the CSP, we constructed a solver, using the library Gecode, 2 for in- ference of consistent networks, using as input a time series arising from microarrays data. Then, by simulating the dynamics of a sample of networks found in the previous step, we were able to determine some interesting constraints to filter the set of networks. We apply our method to three datasets: two artificial, and for validation, we use a time series of an artificial network known from literature. Thus we were able to infer genetic networks sets of possible interest for laboratory tests.
25

Boolean functions and discrete dynamics: analytic and biological application: Boolean functions and discretedynamics:analytic and biological application

Ebadi, Haleh 06 February 2016 (has links)
Modeling complex gene interacting systems as Boolean networks lead to a significant simplification of computational investigation. This can be achieved by discretization of the expression level to ON or OFF states and classifying the interactions to inhibitory and activating. In this respect, Boolean functions are responsible for the evolution of the binary elements of the Boolean networks. In this thesis, we investigate the mostly used Boolean functions in modeling gene regulatory networks. Moreover, we introduce a new type of function with strong inhibitory namely the veto function. Our computational and analytic studies on the verity of the networks capable of constructing the same State Transition Graph lead to define a new concept namely the “degeneracy” of Boolean functions. We further derive analytically the sensitivity of the Boolean functions to perturbations. It turns out that the veto function forms the most robust dynamics. Furthermore, we verify the applicability of veto function to model the yeast cell cycle networks. In particular, we show that in an intracellular signal transduction network [Helikar et al, PNAS (2008)], the functions with veto are over-represented by a factor exceeding the over-representation of threshold functions and canalyzing functions in the same system. The statistics of the connections of the functional networks are studied in detail. Finally, we look at a different scale of biological phenomena using a binary model. We propose a simple correlation-based model to describe the pattern formation of Fly eye. Specifically, we model two different procedures of Fly eye formation, and provide a generic approach for Fly eye simulation.
26

On the Effect of Heterogeneity on the Dynamics and Performance of Dynamical Networks

Goudarzi, Alireza 01 January 2012 (has links)
The high cost of processor fabrication plants and approaching physical limits have started a new wave research in alternative computing paradigms. As an alternative to the top-down manufactured silicon-based computers, research in computing using natural and physical system directly has recently gained a great deal of interest. A branch of this research promotes the idea that any physical system with sufficiently complex dynamics is able to perform computation. The power of networks in representing complex interactions between many parts make them a suitable choice for modeling physical systems. Many studies used networks with a homogeneous structure to describe the computational circuits. However physical systems are inherently heterogeneous. We aim to study the effect of heterogeneity in the dynamics of physical systems that pertains to information processing. Two particularly well-studied network models that represent information processing in a wide range of physical systems are Random Boolean Networks (RBN), that are used to model gene interactions, and Liquid State Machines (LSM), that are used to model brain-like networks. In this thesis, we study the effects of function heterogeneity, in-degree heterogeneity, and interconnect irregularity on the dynamics and the performance of RBN and LSM. First, we introduce the model parameters to characterize the heterogeneity of components in RBN and LSM networks. We then quantify the effects of heterogeneity on the network dynamics. For the three heterogeneity aspects that we studied, we found that the effect of heterogeneity on RBN and LSM are very different. We find that in LSM the in-degree heterogeneity decreases the chaoticity in the network, whereas it increases chaoticity in RBN. For interconnect irregularity, heterogeneity decreases the chaoticity in LSM while its effects on RBN the dynamics depends on the connectivity. For {K} < 2, heterogeneity in the interconnect will increase the chaoticity in the dynamics and for {K} > 2 it decreases the chaoticity. We find that function heterogeneity has virtually no effect on the LSM dynamics. In RBN however, function heterogeneity actually makes the dynamics predictable as a function of connectivity and heterogeneity in the network structure. We hypothesize that node heterogeneity in RBN may help signal processing because of the variety of signal decomposition by different nodes.
27

Rhythms and Evolution: Effects of Timing on Survival

Pace, Bruno 14 November 2016 (has links) (PDF)
The evolution of metabolism regulation is an intertwined process, where different strategies are constantly being developed towards a cognitive ability to perceive and respond to an environment. Organisms depend on an orchestration of a complex set of chemical reactions: maintaining homeostasis with a changing environment, while simultaneously sending material and energetic resources to where they are needed. The success of an organism requires efficient metabolic regulation, highlighting the connection between evolution, population dynamics and the underlying biochemistry. In this work, I represent organisms as coupled information-processing networks, that is, gene-regulatory networks receiving signals from the environment and acting on chemical reactions, eventually affecting material flows. I discuss the mechanisms through which metabolism control is improved during evolution and how the nonlinearities of competition influence this solution-searching process. The propagation of the populations through the resulting landscapes generally point to the role of the rhythm of cell division as an essential phenotypic feature driving evolution. Subsequently, as it naturally follows, different representations of organisms as oscillators are constructed to indicate more precisely how the interplay between competition, maturation timing and cell-division synchronisation affects the expected evolutionary outcomes, not always leading to the \"survival of the fastest\".
28

Inferência de redes de regulação gênica utilizando o paradigma de crescimento de sementes / Inference of gene regulatory networks using the seed growing paradigm

Higa, Carlos Henrique Aguena 17 February 2012 (has links)
Um problema importante na área de Biologia Sistêmica é o de inferência de redes de regulação gênica. Os avanços científicos e tecnológicos nos permitem analisar a expressão gênica de milhares de genes simultaneamente. Por \"expressão gênica\'\', estamos nos referindo ao nível de mRNA dentro de uma célula. Devido a esta grande quantidade de dados, métodos matemáticos, estatísticos e computacionais têm sido desenvolvidos com o objetivo de elucidar os mecanismos de regulação gênica presentes nos organismos vivos. Para isso, modelos matemáticos de redes de regulação gênica têm sido propostos, assim como algoritmos para inferir estas redes. Neste trabalho, focamos nestes dois aspectos: modelagem e inferência. Com relação à modelagem, estudamos modelos existentes para o ciclo celular da levedura (Saccharomyces cerevisiae). Após este estudo, propomos um modelo baseado em redes Booleanas probabilísticas sensíveis ao contexto, e em seguida, um aprimoramento deste modelo, utilizando cadeias de Markov não homogêneas. Mostramos os resultados, comparando os nossos modelos com os modelos estudados. Com relação à inferência, propomos um novo algoritmo utilizando o paradigma de crescimento de semente de genes. Neste contexto, uma semente é um pequeno subconjunto de genes de interesse. Nosso algoritmo é baseado em dois passos: passo de crescimento de semente e passo de amostragem. No primeiro passo, o algoritmo adiciona outros genes à esta semente, seguindo algum critério. No segundo, o algoritmo realiza uma amostragem de redes, definindo como saída um conjunto de redes potencialmente interessantes. Aplicamos o algoritmo em dados artificiais e dados biológicos de células HeLa, mostrando resultados satisfatórios. / A key problem in Systems Biology is the inference of gene regulatory networks. The scientific and technological advancement allow us to analyze the gene expression of thousands of genes, simultaneously. By \"gene expression\'\' we refer to the mRNA concentration level inside a cell. Due to this large amount of data, mathematical, statistical and computational methods have been developed in order to elucidate the gene regulatory mechanisms that take part of every living organism. To this end, mathematical models of gene regulatory networks have been proposed, along with algorithms to infer these networks. In this work, we focus in two aspects: modeling and inference. Regarding the modeling, we studied existing models for the yeast (Saccharomyces cerevisiae) cell cycle. After that, we proposed a model based on context sensitive probabilistic Boolean networks, and then, an improvement of this model, using nonhomogeneous Markov chain. We show the results, comparing our models against the studied models. Regarding the inference, we proposed a new algorithm using the seed growing paradigm. In this context, a seed is a small subset of genes. Our algorithm is based in two main steps: seed growing step and sampling step. In the first step, the algorithm adds genes into the seed, according to some criterion. In the second step, the algorithm performs a sampling process on the space of networks, defining as its output a set of potentially interesting networks. We applied the algorithm on artificial and biological HeLa cells data, showing satisfactory results.
29

Inferência de redes de regulação gênica utilizando o paradigma de crescimento de sementes / Inference of gene regulatory networks using the seed growing paradigm

Carlos Henrique Aguena Higa 17 February 2012 (has links)
Um problema importante na área de Biologia Sistêmica é o de inferência de redes de regulação gênica. Os avanços científicos e tecnológicos nos permitem analisar a expressão gênica de milhares de genes simultaneamente. Por \"expressão gênica\'\', estamos nos referindo ao nível de mRNA dentro de uma célula. Devido a esta grande quantidade de dados, métodos matemáticos, estatísticos e computacionais têm sido desenvolvidos com o objetivo de elucidar os mecanismos de regulação gênica presentes nos organismos vivos. Para isso, modelos matemáticos de redes de regulação gênica têm sido propostos, assim como algoritmos para inferir estas redes. Neste trabalho, focamos nestes dois aspectos: modelagem e inferência. Com relação à modelagem, estudamos modelos existentes para o ciclo celular da levedura (Saccharomyces cerevisiae). Após este estudo, propomos um modelo baseado em redes Booleanas probabilísticas sensíveis ao contexto, e em seguida, um aprimoramento deste modelo, utilizando cadeias de Markov não homogêneas. Mostramos os resultados, comparando os nossos modelos com os modelos estudados. Com relação à inferência, propomos um novo algoritmo utilizando o paradigma de crescimento de semente de genes. Neste contexto, uma semente é um pequeno subconjunto de genes de interesse. Nosso algoritmo é baseado em dois passos: passo de crescimento de semente e passo de amostragem. No primeiro passo, o algoritmo adiciona outros genes à esta semente, seguindo algum critério. No segundo, o algoritmo realiza uma amostragem de redes, definindo como saída um conjunto de redes potencialmente interessantes. Aplicamos o algoritmo em dados artificiais e dados biológicos de células HeLa, mostrando resultados satisfatórios. / A key problem in Systems Biology is the inference of gene regulatory networks. The scientific and technological advancement allow us to analyze the gene expression of thousands of genes, simultaneously. By \"gene expression\'\' we refer to the mRNA concentration level inside a cell. Due to this large amount of data, mathematical, statistical and computational methods have been developed in order to elucidate the gene regulatory mechanisms that take part of every living organism. To this end, mathematical models of gene regulatory networks have been proposed, along with algorithms to infer these networks. In this work, we focus in two aspects: modeling and inference. Regarding the modeling, we studied existing models for the yeast (Saccharomyces cerevisiae) cell cycle. After that, we proposed a model based on context sensitive probabilistic Boolean networks, and then, an improvement of this model, using nonhomogeneous Markov chain. We show the results, comparing our models against the studied models. Regarding the inference, we proposed a new algorithm using the seed growing paradigm. In this context, a seed is a small subset of genes. Our algorithm is based in two main steps: seed growing step and sampling step. In the first step, the algorithm adds genes into the seed, according to some criterion. In the second step, the algorithm performs a sampling process on the space of networks, defining as its output a set of potentially interesting networks. We applied the algorithm on artificial and biological HeLa cells data, showing satisfactory results.
30

On the Effect of Topology on Learning and Generalization in Random Automata Networks

Goudarzi, Alireza 01 January 2011 (has links)
We extend the study of learning and generalization in feed forward Boolean networks to random Boolean networks (RBNs). We explore the relationship between the learning capability and the network topology, the system size, the training sample size, and the complexity of the computational tasks. We show experimentally that there exists a critical connectivity Kc that improves the generalization and adaptation in networks. In addition, we show that in finite size networks, the critical K is a power-law function of the system size N and the fraction of inputs used during the training. We explain why adaptation improves at this critical connectivity by showing that the network ensemble manifests maximal topological diversity near Kc. Our work is partly motivated by self-assembled molecular and nanoscale electronics. Our findings allow to determine an automata network topology class for efficient and robust information processing.

Page generated in 0.0509 seconds