• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 3
  • 2
  • 1
  • Tagged with
  • 15
  • 15
  • 8
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Porézní borem dopované diamantové elektrody: Charakterizace a využití v elektroanalýze / Porous Boron-Doped Diamond Electrodes: Characterisation and Application for Electroanalysis

Baluchová, Simona January 2021 (has links)
This dissertation thesis presents newly developed electrode materials based on porous boron- doped diamond (BDDporous) and their potential applications in electroanalysis. Particularly, these novel BDDporous electrodes (twelve in total) were thoroughly electrochemically characterised and compared, and the ones with the most promising properties were selected to develop reliable voltammetric methods for detecting the neurotransmitter dopamine. Initially, the impact of selected fabrication parameters on the final properties and electrochemical behaviour of novel BDDporous electrodes was clarified; the following factors were specifically studied: (1) deposition template used, (2) boron-doping level, (3) growth time of the individual layers (i.e., porosity), (4) number of deposited layers (i.e., thickness), and (5) content of non-diamond (sp2 ) carbon impurities. Alterations in deposition conditions naturally resulted in BDDporous electrodes with diverse (i) structural and morphological features, which were investigated by scanning electron microscopy and Raman spectroscopy, and (ii) physical and electrochemical characteristics, examined by cyclic voltammetry. Besides, to assess the suitability of selected BDDporous electrodes for dopamine detection, other parameters, such as susceptibility to...
12

Synthesis of Diamond Thin Films for Applications in High Temperature Electronics

Ramamurti, Rahul 21 July 2006 (has links)
No description available.
13

One-Pot Synthesis of Boron-Doped Polycyclic Aromatic Hydrocarbons via 1,4-Boron Migration

Zhang, Jin-Jiang, Tang, Man-Chung, Fu, Yubin, Low, Kam-Hung, Ma, Ji, Yang, Lin, Weigand, Jan J., Liu, Junzhi, Wing-Wah Yam, Vivian, Feng, Xinliang 17 May 2024 (has links)
Herein, we demonstrate a novel one-pot synthetic method towards a series of boron-doped polycyclic aromatic hydrocarbons (B-PAHs, 1 a–1 o), including hitherto unknown B-doped zethrene derivatives, from ortho-aryl substituted diarylalkynes with high atom efficiency and broad substrate scopes. A reaction mechanism is proposed based on the experimental investigation together with the theoretical calculations, which involves a unique 1,4-boron migration process. The resultant benchtop-stable B-PAHs are thoroughly investigated by X-ray crystallography, cyclic voltammetry, UV/Vis absorption, and fluorescence spectroscopies. The blue and green organic light-emitting diode (OLED) devices based on 1 f and 1 k are further fabricated, demonstrating the promising application potential of B-PAHs in organic optoelectronics.
14

Compensation engineering for silicon solar cells / Ingénierie de compensation pour cellules solaires en silicium

Forster, Maxime 17 December 2012 (has links)
Cette thèse s’intéresse aux effets de la compensation des dopants sur les propriétés électriques du silicium cristallin. Nous montrons que le contrôle du dopage net, qui est indispensable à la réalisation de cellules solaires à haut rendement, s’avère difficile dans les lingots cristallisés à partir de silicium contenant à la fois du bore et du phosphore. Cette difficulté s’explique par la forte ségrégation du phosphore durant la cristallisation, qui donne lieu à d’importantes variations de dopage net le long des lingots de silicium solidifés de façon directionelle. Pour résoudre ce problème, nous proposons le co-dopage au gallium pendant la cristallisation et prouvons l’efficacité de cette technique pour contrôler le dopage net le long de lingots de type p ou n fabriqués à partir d’une charge de silicium contenant du bore et du phosphore. Nous identifions les spécificités du matériau fortement compensé ainsi obtenu comme étant: une forte sensibilité de la densité de porteurs majoritaires à l’ionisation incomplète des dopants, une réduction importante de la mobilité comparée aux modèles théoriques et une durée de vie des porteurs qui est déterminée par la densité de porteurs majoritaires et dominée après éclairement prolongé par les centres de recombinaison liés aux complexes de bore et d’oxygène. Pour permettre la modélisation de cellules solaires à base de silicium purifié par voie métallurgique, nous proposons une paramétrisation des propriétés fondamentales du silicium compensé mentionnées ci dessus. Nous étudions également la dégradation de la durée de vie des porteurs sous éclairement dans des échantillons de silicium de type p et n présentant une large gamme de niveaux de dopage et de compensation. Nous montrons que le défaut bore-oxygène est issu d’un complexe formé à partir de bore substitutionnel pendant la fabrication des lingots et activé sous injection de porteurs par une reconfiguration du défaut assistée par des charges positives. Finalement, nous appliquons le co-dopage au gallium pour la cristallisation de silicium UMG et démontrons que cette technique permet d’augmenter sensiblement la tolérance au phosphore sans compromettre le rendement matière de l’étape de cristallisation ou la performance des cellules solaires avant dégradation sous éclairement. / This thesis focuses on the effects of dopant compensation on the electrical properties of crystalline silicon relevant to the operation of solar cells. We show that the control of the net dopant density, which is essential to the fabrication of high-efficiency solar cells, is very challenging in ingots crystallized with silicon feedstock containing both boron and phosphorus such as upgraded metallurgical-grade silicon. This is because of the strong segregation of phosphorus which induces large net dopant density variations along directionally solidified silicon crystals. To overcome this issue, we propose to use gallium co-doping during crystallization, and demonstrate its potential to control the net dopant density along p-type and n-type silicon ingots grown with silicon containing boron and phosphorus. The characteristics of the resulting highly-compensated material are identified to be: a strong impact of incomplete ionization of dopants on the majority carrier density, an important reduction of the mobility compared to theoretical models and a recombination lifetime which is determined by the net dopant density and dominated after long-term illumination by the boron-oxygen recombination centre. To allow accurate modelling of upgraded-metallurgical silicon solar cells, we propose a parameterization of these fundamental properties of compensated silicon. We study the light-induced lifetime degradation in p-type and n-type Si with a wide range of dopant concentrations and compensation levels and show that the boron-oxygen defect is a grown-in complex involving substitutional boron and is rendered electrically active upon injection of carriers through a charge-driven reconfiguration of the defect. Finally, we apply gallium co-doping to the crystallization of upgraded-metallurgical silicon and demonstrate that it allows to significantly increase the tolerance to phosphorus without compromising neither the ingot yield nor the solar cells performance before light-induced degradation.
15

Engineering Multicomponent Nanostructures for MOSFET, Photonic Detector and Hybrid Solar Cell Applications

Jamshidi Zavaraki, Asghar January 2015 (has links)
Silicon technologyhas been seekingfor a monolithic solution for a chip where data processing and data communication is performed in the CMOS part and the photonic component, respectively. Traditionally, silicon has been widely considered for electronic applications but not for photonic applications due to its indirect bandgap nature. However, band structure engineering and manipulation through alloying Si with Ge and Sn has opened new possibilities. Theoretical calculations show that it is possible to achieve direct transitions from Ge ifit is alloyed with Sn. Therefore, a GeSn system is a choice to get a direct bandgap. Extending to ternary GeSnSi and quaternary GeSnSiCstructures grown on Si wafers not only makes the bandgap engineering possible but also allowsgrowing lattice matched systems with different strain and bandgaps located in the infrared region. Different heterostructures can be designed and fabricated for detecting lightas photonic sensing oremitting the light as lasers. Alloying not only makes engineering possible but it also induces strain which plays an important role for electronic applications. Theoretical and experimental works show that tensile strain could increase the mobility, which is promising for electronic devices where high mobility channels for high performance MOSFETs is needed to speed up the switching rate. On the other hand, high n-doping in tensile strains in p-i-n structures makesΓ band transitions most probable which is promising for detection and emission of the light. As another benefit of tensile strain, the direct bandgap part shrinks faster than the indirect one if the strain amount is increased. To get both electronic and photonic applications of GeSn-based structures, two heterostructures (Ge/GeSn(Si)/GeSi/Ge/Si and Ge/GeSn/Si systems), including relaxed and compressive strained layers used to produce tensile strained layers, were designed in this thesis. The low temperature growth is of key importance in this work because the synthesis of GeSn-based hetrostructures on Si wafers requires low thermal conditions due tothe large lattice mismatch which makes them metastable. RPCVD was used to synthesize theseheterostructures because not only it offers a low temperature growth but also because it is compatible with CMOS technology. For utilization of these structures in devices, n-type and p-type doping of relaxed and compressive strained layers were developed. HRRLMs, HRTEM, RBS, SIMS, and FPP techniques were employed to evaluatestrain, quality, Sn content and composition profile of the heterostructures. The application of GeSn-based heterostructures is not restricted to electronics and photonics. Another application investigated in this work is photovoltaics. In competition with Si-based solar cells, which have, or areexpected to have,high stability and efficiency, thirdgeneration solar cells offer the use of low cost materials and production and can therefore be an alternative for future light energy conversion technology. Particularly, quantum dot sensitized solar cells are associated with favorable properties such as high extrinsic coefficients, size dependent bandgaps and multiple exciton generation and with a theoretical efficiencyof 44%. In this work, two categories of QDs, Cd-free and Cd-based QDs were employed as sensitizers in quantum dot sensitized solar cells (QDSSCs). Cd-based QDs have attracted large interest due to high quantum yield,however, toxicityremains still totheir disadvantage. Mn doping as a bandgap engineering tool for Cd-based type IIZnSe/CdS QDs wasemployed to boostthe solar cell efficiency. Theoretical and experimental investigations show that compared to single coreQDSSCs,typeII core-shells offer higher electron-hole separation due to efficient band alignment where the photogenerated electrons and holes are located in the conduction band of the shell and valence band of the core, respectively. This electron-hole separation suppresses recombination and by carefully designing the band alignment in the deviceit can increase the electron injection and consequently the power conversion efficiency of the device. Considering eco-friendly and commercialization aspects, three different “green” colloidal nanostructures having special band alignments, which are compatible for sensitized solar cells, were designed and fabricated by the hot injection method. Cu2GeS3-InP QDs not only can harvest light energy up to the infraredregion but can also be usedastypeII QDs. ZnS-coating was employed as a strategy to passivate the surface of InP QDs from interaction with air and electrolyte. In addition, ZnS-coating and hybrid passivation was applied for CuInS2QDs to eliminate surface traps. / <p>QC 20151125</p>

Page generated in 0.0643 seconds