Spelling suggestions: "subject:"dose einstein condensation"" "subject:"dose winstein condensation""
131 |
Singular behavior near surfaces: boundary conditions on fluids and surface critical phenomena / 表面近くでの特異な振る舞い:流体の境界条件と表面臨界現象Nakano, Hiroyoshi 25 March 2019 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(理学) / 甲第21551号 / 理博第4458号 / 新制||理||1640(附属図書館) / 京都大学大学院理学研究科物理学・宇宙物理学専攻 / (主査)教授 佐々 真一, 准教授 藤 定義, 准教授 荒木 武昭 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DGAM
|
132 |
Non-Equilibrium Quantum Spin Transport Theory Based on Schwinger-Keldysh Formalism / Schwinger-Keldysh形式に基づく非平衡量子スピン輸送理論Nakata, Kouki 24 March 2014 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(理学) / 甲第18056号 / 理博第3934号 / 新制||理||1567(附属図書館) / 30914 / 京都大学大学院理学研究科物理学・宇宙物理学専攻 / (主査)准教授 戸塚 圭介, 教授 石田 憲二, 教授 川上 則雄 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DFAM
|
133 |
Parametric instabilities of the Yang-Mills field and far-from-equilibrium dynamics of overpopulated bosons / ヤン・ミルズ場のパラメトリック不安定性と過占有ボソン系の非平衡ダイナミクスTsutsui, Shoichiro 23 March 2017 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(理学) / 甲第20173号 / 理博第4258号 / 新制||理||1612(附属図書館) / 京都大学大学院理学研究科物理学・宇宙物理学専攻 / (主査)教授 大西 明, 教授 國廣 悌二, 教授 川合 光 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DGAM
|
134 |
Reaching the Bose-Einstein Condensation of Dipolar Molecules: a Journey from Ultracold Atoms to Molecular Quantum ControlBigagli, Niccolò January 2024 (has links)
Achieving the quantum control of ever more complex systems has been a driving force of atomic, molecular, and optical physics. This goal has materialized in the harnessing of systems with increasingly rich structures and interactions: the more sophisticated the system, the more faceted and fascinating its application to fields as varied as quantum simulation, quantum information, many body physics, metrology, and quantum chemistry. One of the current frontiers of quantum control is ultracold dipolar molecules. They present rich internal structures and long-range, anisotropic dipole-dipole interactions which promise to revolutionize AMO physics, for example by realizing realistic Hamiltonians in quantum simulation, by providing a new platform for quantum information, and by achieving a novel kind of quantum liquid.
Despite its promises, the full quantum control of dipolar molecules has been over a decade in the making. The difficulties in either directly laser cooling molecules or in collisionally stabilizing their bulk samples have been major roadblocks that have hampered the development of this quantum system. The realization of a Bose-Einstein condensate of dipolar molecules has been a particularly elusive milestone. In this thesis, I report on the first observation of this quantum state of matter.
The work that brought us to this achievement parallels the historical evolution of AMO physics in the last thirty years. To reach a BEC of molecules, we initially constructed a dual species experiment capable of realizing the simultaneous Bose-Einstein condensation of atomic sodium (Na) and cesium (Cs). Individual BECs of sodium and cesium were first reported in 1995 and 2003 respectively, while our experiment was the first instance of their concurrent condensation. The study of the Na-Cs interatomic scattering properties in an homogeneous magnetic field showed us the path to the Feshbach association of loosely-bound sodium-cesium (NaCs) molecules, a technique first demonstrated in 2006 for heteronuclear molecules but never attempted on our species. Following the Feschbach association, we determined a novel pathway to the molecular electronic, vibrational and rotational ground state using STIRAP.
From this point, we found ourselves at the forefront of the field: bulk samples of bosonic molecules such as NaCs had neither been stabilized against collisional losses nor evaporatively cooled. At first, we successfully applied a single-frequency microwave shielding approach to decrease in-bulk losses by a factor of 200 and reach lifetimes on the order of 2 s, allowing us to measure high elastic scattering rates and characterize their dipolar anisotropy. Moreover, we demonstrated the first evaporative cooling of a bosonic molecular gas by increasing its phase-spacedensity by a factor of 20 and reaching a temperature of 36(5) nK. Since this proved insufficient to achieve Bose-Einstein condensation due to unexpected three-body losses, we introduced an enhanced microwave shielding technique, double microwave shielding. This further decreased loss rates enabling efficient evaporative cooling of our sample to a long-lived Bose-Einstein condensate of dipolar molecules. This new double microwave shielding technique also allows the tunability of the strength of dipole-dipole interaction, establishing ultracold bosonic dipolar molecules as a new quantum liquid for the exploration of many body physics.
In addition to the experimental work on dipolar NaCs, we have theoretically explored the field of direct molecular laser cooling. Our aim was twofold: we aimed to expand the category of molecules that can be laser cooled and to simplify the identification of laser cycling schemes. For the former goal, we lifted the widespread assumption that only molecules with diagonal Franck-Condon factors could be laser cooled. For the latter, we decided to employ publicly available repositories of molecular transitions. A second consequence of the use of these databases is that they contain data on molecules of interest to other scientific fields, further establishing direct laser cooling as a technique that could be of interest beyond AMO physics. Our work was successful in that we identified laser cycling schemes for C₂ and OH+. To simplify the determination of laser cycling schemes, we developed a graph-based algorithm form their identification starting from spectroscopic data.
|
135 |
Bose-Einstein Condensation: Building the Testbeds to Study SuperfluidityNaik, Devang S. 11 September 2006 (has links)
Since Feynman's realization of using quantum systems to investigate quantum dynamics, interest in creating controllable quantum systems to simulate condensed matter phenomenon has been high. With the realization of BECs in 1995, the realization of a relatively clean testbed for simulating some of these phenomenon became a reality.
My PhD research has been an exploration of the production and use of Bose-Einstein Condensates for the study of superfluidity. The first 3 years have been spent in the actual building of a Na BEC apparatus. During this time, we’ve implemented a distinct technique to trap ultra cold Na atoms, i.e. the Optically Plugged Trap. In the process, we have shown how atoms in a linear trap can show spin metastability and thus maintain a nonequilibrium state for long periods of time.
In studying the interaction of ultra-cold atoms with light, we have developed a technique to measure the velocity distribution of atoms using a standing optical wave (Bragg Spectroscopy). Alongside this, we have also created optical traps for atoms in which we can change to shape of the trap itself to probe different condensed matter systems. The eventual goal being the investigation of condensed matter physics, specifically superfluidity, using ultra-cold atoms.
|
136 |
Experiments on Bose-Einstein condensationArlt, Jan January 2000 (has links)
No description available.
|
137 |
Special purpose quantum information processing with atoms in optical latticesKlein, Alexander January 2007 (has links)
Atoms in optical lattices are promising candidates to implement quantum information processing. Their behaviour is well understood on a microscopic level, they exhibit excellent coherence properties, and they can be easily manipulated using external fields. In very deep optical lattices, each atom is restricted to a single lattice site and can be used as a qubit. If the lattice is shallow enough such that the atoms can move, their properties can be used to simulate certain condensed matter phenomena such as superconductivity. In this thesis, we show how technical problems of optical lattices such as restricted decoherence times, or fundamental shortcomings such as the lack of phonons or strong spin interactions, can be overcome by using current or near-future experimental techniques. We introduce a scheme that makes it possible to simulate model Hamiltonians known from high-temperature superconductivity. For this purpose, previous simulation schemes to realise the spin interaction terms are extended. We especially overcome the condition of a filling factor of exactly one, which otherwise would restrict the phase of the simulated system to a Mott-insulator. This scheme makes a large range of parameters accessible, which is difficult to cover with a condensed matter setup. We also investigate the properties of optical lattices submerged into a Bose-Einstein condensate (BEC). A weak-coupling expansion in the BEC-impurity interaction strength is used to derive a model that describes the lattice atoms in terms of polarons, i.e.~atoms dressed by Bogoliubov phonons. This is analogous to the description of electrons in solids, and we observe similar effects such as a crossover from coherent to incoherent transport for increasing temperatures. Moreover, the condensate mediates an attractive off-site interaction, which leads to macroscopic clusters at experimentally realistic parameters. Since the atoms in the lattice can also be used as a quantum register with the BEC mediating a two-qubit gate, we derive a quantum master equation to examine the coherence properties of the atomic qubits. We show that the system exhibits sub- and superdecoherence and that a fast implementation of the two-qubit gate competes with dephasing. Finally, we show how to realise the encoding of qubits in a decoherence-free subspace (DFS) using optical lattices. We develop methods for implementing robust gate operations on qubits encoded in a DFS exploiting collisional interactions between the atoms. We also give a detailed analysis of the performance and stability of the gate operations and show that a robust implementation of quantum repeaters can be achieved using our setup. We compare the robust repeater scheme to one that makes use of conventional qubits only, and show the conditions under which one outperforms the other.
|
138 |
Excitations in Bose-Einstein condensates: collective modes, quantum turbulence and matter wave statistics / Excitações em condensados de Bose-Einstein: modos coletivos, turbulência quântica e estatística de ondas de matériaTavares, Pedro Ernesto Schiavinatti 06 April 2016 (has links)
In this thesis, we present the generation and studies of a 87Rb Bose-Einstein condensate (BEC) perturbed by an oscillatory excitation. The atoms are trapped in a harmonic magnetic trap where, after an evaporative cooling process, we produce the BEC. In order to study the effect caused by oscillatory excitations, a quadrupole magnetic field time oscillatory is superimposed to the trapping potential. Through this perturbation, collective modes were observed. The dipole mode is excited even for low excitation amplitudes. However, a minimum excitation energy is needed to excite the condensate quadrupole mode. Observing the excited cloud in TOF expansion, we note that for excitation amplitude in which the quadrupole mode is excited, the cloud expands without invert its aspect ratio. By looking these clouds, after long time-of-flight, it was possible to see vortices and, sometimes, a turbulent state in the condensed cloud. We calculated the momentum distribution of the perturbed BECs and a power law behavior, like the law to Kolmogorov turbulence, was observed. Furthermore, we show that using the method that we have developed to calculate the momentum distribution, the distribution curve (including the power law exponent) exhibits a dependence on the quadrupole mode oscillation of the cloud. The randomness distribution of peaks and depletions in density distribution image of an expanded turbulent BEC, remind us to the intensity profile of a speckle light beam. The analogy between matter-wave speckle and light speckle is justified by showing the similarities in the spatial propagation (or time expansion) of the waves. In addition, the second order correlation function is evaluated and the same dependence with distance was observed for the both waves. This creates the possibility to understand the properties of quantum matter in a disordered state. The propagation of a three-dimensional speckle field (as the matter-wave speckle described here) creates an opportunity to investigate the speckle phenomenon existing in dimensions higher than 2D (the case of light speckle). / Nesta tese, descrevemos a produção e os estudos de condensados de Bose-Einstein, em átomos de 87Rb, perturbados através de excitações oscilatórias. Os átomos aprisionados são aprisionados em uma armadilha magnética harmônica onde produzimos o condensado de Bose-Einstein após o processo de resfriamento evaporativo. Com o objetivo de estudar o efeito de excitações oscilatórias, um campo magnético quadrupolar temporalmente oscilanteé superposto ao campo de aprisionamento. Através dessa perturbação, podemos observar a excitação de modos coletivos no condensado. Mesmo para baixas amplitudes de excitação, o modo dipolar é facilmente excitado. Porém, observamos que para excitar o modo quadrupolar no condensado é necessária uma energia mínima. Através da expansão em tempo de voo da nuvem excitada, identificamos que, para amplitude de excitação na quail o modo quadrupolar é excitado, a nuvem expande sem inverter o aspect ratio. Analisando essas nuvens por longos tempos de voo, foi possível observar alguns vórtices e, às vezes, um estado turbulento na nuvem condensada. Calculamos a distribuição de momento dessas nuvens e notamos que ela exibe um comportamento de lei de potência, parecido com a lei de Kolmogorov para turbulência. Além disso, mostramos que pelo nosso método que desenvolvemos para calcular a distribuição de momento, a forma da curva dessa distribuição (inclusive o expoente da lei de potência) exibe uma dependência com o modo quadrupolar de oscilação da nuvem. A distribuição desordenada de picos e depleções, na imagem da distribuição de densidade do condensado turbulento expandido, assemelha-se ao perfil de intensidade de um feixe de luz com speckle. A analogia entre speckle de onda de matéria e de luz é fundamentada através das semelhanças entre a propagação (ou expansão) dessas duas ondas. Além disso, a função de correlação de segunda ordem foi calculada e a mesma dependência com a distância foi observada para as duas ondas. Isto cria a possibilidade de entender melhor as propriedades da matéria quântica em um estado de desordem. A propagação de um campo de speckle tridimensional (como é o caso do speckle de onda de matéria aqui descrito) cria uma oportunidade de investigar o fenômeno de speckle em dimensões maiores que 2D (o caso do speckle de luz).
|
139 |
Condensados de Bose-Einstein em redes óticas: a transição superfluido-isolante de Mott em redes hexagonais e a classe de universalidade superfluido-vidro de Bose em 3D / Bose-Einstein condensation in optical lattices: the superfluid-Mott-insulator transition in hexagonal lattices and the superfluid-Bose-glass universality class in 3DCosta, Karine Piacentini Coelho da 28 March 2016 (has links)
Estudamos transições de fases quânticas em gases bosônicos ultrafrios aprisionados em redes óticas. A física desses sistemas é capturada por um modelo do tipo Bose-Hubbard que, no caso de um sistema sem desordem, em que os átomos têm interação de curto alcance e o tunelamento é apenas entre sítios primeiros vizinhos, prevê a transição de fases quântica superfluido-isolante de Mott (SF-MI) quando a profundidade do potencial da rede ótica é variado. Num primeiro estudo, verificamos como o diagrama de fases dessa transição muda quando passamos de uma rede quadrada para uma hexagonal. Num segundo, investigamos como a desordem modifica essa transição. No estudo com rede hexagonal, apresentamos o diagrama de fases da transição SF-MI e uma estimativa para o ponto crítico do primeiro lobo de Mott. Esses resultados foram obtidos usando o algoritmo de Monte Carlo quântico denominado Worm. Comparamos nossos resultados com os obtidos a partir de uma aproximação de campo médio e com os de um sistema com uma rede ótica quadrada. Ao introduzir desordem no sistema, uma nova fase emerge no diagrama de fases do estado fundamental intermediando a fase superfluida e a isolante de Mott. Essa nova fase é conhecida como vidro de Bose (BG) e a transição de fases quântica SF-BG que ocorre nesse sistema gerou muitas controvérsias desde seus primeiros estudos iniciados no fim dos anos 80. Apesar dos avanços em direção ao entendimento completo desta transição, a caracterização básica das suas propriedades críticas ainda é debatida. O que motivou nosso estudo, foi a publicação de resultados experimentais e numéricos em sistemas tridimensionais [Yu et al. Nature 489, 379 (2012), Yu et al. PRB 86, 134421 (2012)] que violam a lei de escala $\\phi= u z$, em que $\\phi$ é o expoente da temperatura crítica, $z$ é o expoente crítico dinâmico e $ u$ é o expoente do comprimento de correlação. Abordamos essa controvérsia numericamente fazendo uma análise de escalonamento finito usando o algoritmo Worm nas suas versões quântica e clássica. Nossos resultados demonstram que trabalhos anteriores sobre a dependência da temperatura de transição superfluido-líquido normal com o potencial químico (ou campo magnético, em sistemas de spin), $T_c \\propto (\\mu-\\mu_c)^\\phi$, estavam equivocados na interpretação de um comportamento transiente na aproximação da região crítica genuína. Quando os parâmetros do modelo são modificados de maneira a ampliar a região crítica quântica, simulações com ambos os modelos clássico e quântico revelam que a lei de escala $\\phi= u z$ [com $\\phi=2.7(2)$, $z=3$ e $ u = 0.88(5)$] é válida. Também estimamos o expoente crítico do parâmetro de ordem, encontrando $\\beta=1.5(2)$. / In this thesis, we have studied phase transitions in ultracold atoms trapped in optical lattices. The physics of these systems is captured by Bose-Hubbard-like models, which predicts a quantum phase transition (the so called superfluid-Mott insulator, or SF-MI) when varying the potential depth of the optical lattice in a system without disorder, where atoms have short range interactions, and tunneling is allowed only between nearest neighbors. Our studies followed two directions, one is concerned with the influence of the geometry of the lattice namely, we study the changes in the phase diagram of the SF-MI phase transition when the optical lattice is hexagonal. A second direction is to include disorder in the original system. In our study of the hexagonal lattice, we obtain the phase diagram for the SF-MI transition and give an approximation for the critical point of the first Mott lobe, using a quantum Monte Carlo algorithm called Worm. We also compare our results with the ones from the squared lattice and obtained using mean-field approximation. When disorder is included in the system, a new phase emerge in the ground-state phase diagram intermediating the superfluid and Mott-insulator phases. This new phase is called Bose-glass (BG) and the quantum phase transition SF-BG was the subject of many controversies since its first studies in the late 80s. Though many progress towards its thorough understanding were made, basics characterization of critical proprieties are still under debate. Our study was motivated by the publication of recent experimental and numerical studies in three-dimensional systems [Yu et al. Nature 489, 379 (2012), Yu et al. PRB 86, 134421 (2012)] reporting strong violations of the key quantum critical relation, $\\phi= u z$, where $\\phi$ is the critical-temperature exponent, $z$ and $ u$ are the dynamic and correlation length critical exponents, respectively. We addressed this controversy numerically performing finite-size scaling analysis using the Worm algorithm, both in its quantum and classical scheme. Our results demonstrate that previous work on the superfluid-to-normal fluid transition-temperature dependence on chemical potential (or magnetic field, in spin systems), $T_c \\propto (\\mu-\\mu_c)^\\phi$, was misinterpreting transient behavior on approach to the fluctuation region with the genuine critical law. When the model parameters are modified to have a broad quantum critical region, simulations of both quantum and classical models reveal that the $\\phi= u z$ law [with $\\phi=2.7(2)$, $z=3$, and $ u = 0.88(5)$] holds true. We also estimate the order parameter exponent, finding $\\beta=1.5(2)$.
|
140 |
Condensados de Bose-Einstein em redes óticas: a transição superfluido-isolante de Mott em redes hexagonais e a classe de universalidade superfluido-vidro de Bose em 3D / Bose-Einstein condensation in optical lattices: the superfluid-Mott-insulator transition in hexagonal lattices and the superfluid-Bose-glass universality class in 3DKarine Piacentini Coelho da Costa 28 March 2016 (has links)
Estudamos transições de fases quânticas em gases bosônicos ultrafrios aprisionados em redes óticas. A física desses sistemas é capturada por um modelo do tipo Bose-Hubbard que, no caso de um sistema sem desordem, em que os átomos têm interação de curto alcance e o tunelamento é apenas entre sítios primeiros vizinhos, prevê a transição de fases quântica superfluido-isolante de Mott (SF-MI) quando a profundidade do potencial da rede ótica é variado. Num primeiro estudo, verificamos como o diagrama de fases dessa transição muda quando passamos de uma rede quadrada para uma hexagonal. Num segundo, investigamos como a desordem modifica essa transição. No estudo com rede hexagonal, apresentamos o diagrama de fases da transição SF-MI e uma estimativa para o ponto crítico do primeiro lobo de Mott. Esses resultados foram obtidos usando o algoritmo de Monte Carlo quântico denominado Worm. Comparamos nossos resultados com os obtidos a partir de uma aproximação de campo médio e com os de um sistema com uma rede ótica quadrada. Ao introduzir desordem no sistema, uma nova fase emerge no diagrama de fases do estado fundamental intermediando a fase superfluida e a isolante de Mott. Essa nova fase é conhecida como vidro de Bose (BG) e a transição de fases quântica SF-BG que ocorre nesse sistema gerou muitas controvérsias desde seus primeiros estudos iniciados no fim dos anos 80. Apesar dos avanços em direção ao entendimento completo desta transição, a caracterização básica das suas propriedades críticas ainda é debatida. O que motivou nosso estudo, foi a publicação de resultados experimentais e numéricos em sistemas tridimensionais [Yu et al. Nature 489, 379 (2012), Yu et al. PRB 86, 134421 (2012)] que violam a lei de escala $\\phi= u z$, em que $\\phi$ é o expoente da temperatura crítica, $z$ é o expoente crítico dinâmico e $ u$ é o expoente do comprimento de correlação. Abordamos essa controvérsia numericamente fazendo uma análise de escalonamento finito usando o algoritmo Worm nas suas versões quântica e clássica. Nossos resultados demonstram que trabalhos anteriores sobre a dependência da temperatura de transição superfluido-líquido normal com o potencial químico (ou campo magnético, em sistemas de spin), $T_c \\propto (\\mu-\\mu_c)^\\phi$, estavam equivocados na interpretação de um comportamento transiente na aproximação da região crítica genuína. Quando os parâmetros do modelo são modificados de maneira a ampliar a região crítica quântica, simulações com ambos os modelos clássico e quântico revelam que a lei de escala $\\phi= u z$ [com $\\phi=2.7(2)$, $z=3$ e $ u = 0.88(5)$] é válida. Também estimamos o expoente crítico do parâmetro de ordem, encontrando $\\beta=1.5(2)$. / In this thesis, we have studied phase transitions in ultracold atoms trapped in optical lattices. The physics of these systems is captured by Bose-Hubbard-like models, which predicts a quantum phase transition (the so called superfluid-Mott insulator, or SF-MI) when varying the potential depth of the optical lattice in a system without disorder, where atoms have short range interactions, and tunneling is allowed only between nearest neighbors. Our studies followed two directions, one is concerned with the influence of the geometry of the lattice namely, we study the changes in the phase diagram of the SF-MI phase transition when the optical lattice is hexagonal. A second direction is to include disorder in the original system. In our study of the hexagonal lattice, we obtain the phase diagram for the SF-MI transition and give an approximation for the critical point of the first Mott lobe, using a quantum Monte Carlo algorithm called Worm. We also compare our results with the ones from the squared lattice and obtained using mean-field approximation. When disorder is included in the system, a new phase emerge in the ground-state phase diagram intermediating the superfluid and Mott-insulator phases. This new phase is called Bose-glass (BG) and the quantum phase transition SF-BG was the subject of many controversies since its first studies in the late 80s. Though many progress towards its thorough understanding were made, basics characterization of critical proprieties are still under debate. Our study was motivated by the publication of recent experimental and numerical studies in three-dimensional systems [Yu et al. Nature 489, 379 (2012), Yu et al. PRB 86, 134421 (2012)] reporting strong violations of the key quantum critical relation, $\\phi= u z$, where $\\phi$ is the critical-temperature exponent, $z$ and $ u$ are the dynamic and correlation length critical exponents, respectively. We addressed this controversy numerically performing finite-size scaling analysis using the Worm algorithm, both in its quantum and classical scheme. Our results demonstrate that previous work on the superfluid-to-normal fluid transition-temperature dependence on chemical potential (or magnetic field, in spin systems), $T_c \\propto (\\mu-\\mu_c)^\\phi$, was misinterpreting transient behavior on approach to the fluctuation region with the genuine critical law. When the model parameters are modified to have a broad quantum critical region, simulations of both quantum and classical models reveal that the $\\phi= u z$ law [with $\\phi=2.7(2)$, $z=3$, and $ u = 0.88(5)$] holds true. We also estimate the order parameter exponent, finding $\\beta=1.5(2)$.
|
Page generated in 0.1202 seconds