Spelling suggestions: "subject:"boundary bonditions."" "subject:"boundary 12onditions.""
121 |
A Consolidated Global Navigation Satellite System Multipath Analysis Considering Modern Signals, Antenna Installation, and Boundary Conditions for Ground-Based ApplicationsAppleget, Andrew L. 16 September 2020 (has links)
No description available.
|
122 |
The capabilities of summation-by-parts and structure-preserving operators for compressible computational fluid dynamics and reaction-diffusion modelsSayyari, Mohammed 03 1900 (has links)
With the algorithm’s suitability for exploiting current petascale and next-generation exascale supercomputers, stable and structure-preserving properties are necessary to develop predictive computational tools. In this dissertation, summation-by-parts (SBP) operators and a new relaxation Runge–Kutta (RRK) scheme are used to construct mimetic and structure-preserving full discretization for non-reactive compressible computational fluid dynamics (CFD) and reaction-diffusion models. In the first chapter, we provide the necessary background and a literature survey that forms the basis of this dissertation. Next, we provide a short overview of entropy stability for general conservation laws. The second chapter covers the analysis of the Eulerian model for compressible and heat-conducting flows. We provide the necessary background of the new system of parabolic partial differential equation (PDE). Then, we present the entropy stability analysis of the model at the continuous level. Subsequently, using the SBP, we construct an entropy-stable discretization of any order for unstructured grids with tensor-product elements. The third chapter discusses the implementation of RRK methods. We start by reviewing the RRK scheme constructed to guarantee conservation or stability with respect to any inner-product norm. Then, we present the extension and generalization of RRK schemes to general convex functionals and their application to compressible fluid flow problems. The final chapter demonstrates the far-reaching capabilities of the SBP operators and RRK schemes presenting the development of a novel fully discrete Lyapunov stable discretization for reaction models with spatial diffusion. Finally, we conclude this dissertation with an overview of our achievements and future research directions.
|
123 |
Aggregate Modeling of Large-Scale Cyber-Physical SystemsZhao, Lin January 2017 (has links)
No description available.
|
124 |
Multiscale Modeling of Hemodynamics in Human Vessel Network and Its Applications in Cerebral AneurysmsYu, Hongtao 24 May 2018 (has links)
No description available.
|
125 |
Wave Functions of Integrable ModelsMei, Zhongtao 29 October 2018 (has links)
No description available.
|
126 |
Structural Shape Optimization Based On The Use Of Cartesian GridsMarco Alacid, Onofre 06 July 2018 (has links)
Tesis por compendio / As ever more challenging designs are required in present-day industries, the traditional trial-and-error procedure frequently used for designing mechanical parts slows down the design process and yields suboptimal designs, so that new approaches are needed to obtain a competitive advantage. With the ascent of the Finite Element Method (FEM) in the engineering community in the 1970s, structural shape optimization arose as a promising area of application.
However, due to the iterative nature of shape optimization processes, the handling of large quantities of numerical models along with the approximated character of numerical methods may even dissuade the use of these techniques (or fail to exploit their full potential) because the development time of new products is becoming ever shorter.
This Thesis is concerned with the formulation of a 3D methodology based on the Cartesian-grid Finite Element Method (cgFEM) as a tool for efficient and robust numerical analysis. This methodology belongs to the category of embedded (or fictitious) domain discretization techniques in which the key concept is to extend the structural analysis problem to an easy-to-mesh approximation domain that encloses the physical domain boundary.
The use of Cartesian grids provides a natural platform for structural shape optimization because the numerical domain is separated from a physical model, which can easily be changed during the optimization procedure without altering the background discretization. Another advantage is the fact that mesh generation becomes a trivial task since the discretization of the numerical domain and its manipulation, in combination with an efficient hierarchical data structure, can be exploited to save computational effort.
However, these advantages are challenged by several numerical issues. Basically, the computational effort has moved from the use of expensive meshing algorithms towards the use of, for example, elaborate numerical integration schemes designed to capture the mismatch between the geometrical domain boundary and the embedding finite element mesh. To do this we used a stabilized formulation to impose boundary conditions and developed novel techniques to be able to capture the exact boundary representation of the models.
To complete the implementation of a structural shape optimization method an adjunct formulation is used for the differentiation of the design sensitivities required for gradient-based algorithms. The derivatives are not only the variables required for the process, but also compose a powerful tool for projecting information between different designs, or even projecting the information to create h-adapted meshes without going through a full h-adaptive refinement process.
The proposed improvements are reflected in the numerical examples included in this Thesis. These analyses clearly show the improved behavior of the cgFEM technology as regards numerical accuracy and computational efficiency, and consequently the suitability of the cgFEM approach for shape optimization or contact problems. / La competitividad en la industria actual impone la necesidad de generar nuevos y mejores diseños. El tradicional procedimiento de prueba y error, usado a menudo para el diseño de componentes mecánicos, ralentiza el proceso de diseño y produce diseños subóptimos, por lo que se necesitan nuevos enfoques para obtener una ventaja competitiva. Con el desarrollo del Método de los Elementos Finitos (MEF) en el campo de la ingeniería en la década de 1970, la optimización de forma estructural surgió como un área de aplicación prometedora.
El entorno industrial cada vez más exigente implica ciclos cada vez más cortos de desarrollo de nuevos productos. Por tanto, la naturaleza iterativa de los procesos de optimización de forma, que supone el análisis de gran cantidad de geometrías (para las se han de usar modelos numéricos de gran tamaño a fin de limitar el efecto de los errores intrínsecamente asociados a las técnicas numéricas), puede incluso disuadir del uso de estas técnicas.
Esta Tesis se centra en la formulación de una metodología 3D basada en el Cartesian-grid Finite Element Method (cgFEM) como herramienta para un análisis numérico eficiente y robusto. Esta metodología pertenece a la categoría de técnicas de discretización Immersed Boundary donde el concepto clave es extender el problema de análisis estructural a un dominio de aproximación, que contiene la frontera del dominio físico, cuya discretización (mallado) resulte sencilla.
El uso de mallados cartesianos proporciona una plataforma natural para la optimización de forma estructural porque el dominio numérico está separado del modelo físico, que podrá cambiar libremente durante el procedimiento de optimización sin alterar la discretización subyacente. Otro argumento positivo reside en el hecho de que la generación de malla se convierte en una tarea trivial. La discretización del dominio numérico y su manipulación, en coalición con la eficiencia de una estructura jerárquica de datos, pueden ser explotados para ahorrar coste computacional.
Sin embargo, estas ventajas pueden ser cuestionadas por varios problemas numéricos. Básicamente, el esfuerzo computacional se ha desplazado. Del uso de costosos algoritmos de mallado nos movemos hacia el uso de, por ejemplo, esquemas de integración numérica elaborados para poder capturar la discrepancia entre la frontera del dominio geométrico y la malla de elementos finitos que lo embebe. Para ello, utilizamos, por un lado, una formulación de estabilización para imponer condiciones de contorno y, por otro lado, hemos desarrollado nuevas técnicas para poder captar la representación exacta de los modelos geométricos.
Para completar la implementación de un método de optimización de forma estructural se usa una formulación adjunta para derivar las sensibilidades de diseño requeridas por los algoritmos basados en gradiente. Las derivadas no son sólo variables requeridas para el proceso, sino una poderosa herramienta para poder proyectar información entre diferentes diseños o, incluso, proyectar la información para crear mallas h-adaptadas sin pasar por un proceso completo de refinamiento h-adaptativo.
Las mejoras propuestas se reflejan en los ejemplos numéricos presentados en esta Tesis. Estos análisis muestran claramente el comportamiento superior de la tecnología cgFEM en cuanto a precisión numérica y eficiencia computacional. En consecuencia, el enfoque cgFEM se postula como una herramienta adecuada para la optimización de forma. / Actualment, amb la competència existent en la industria, s'imposa la necessitat de generar nous i millors dissenys . El tradicional procediment de prova i error, que amb freqüència es fa servir pel disseny de components mecànics, endarrereix el procés de disseny i produeix dissenys subòptims, pel que es necessiten nous enfocaments per obtindre avantatge competitiu. Amb el desenvolupament del Mètode dels Elements Finits (MEF) en el camp de l'enginyeria en la dècada de 1970, l'optimització de forma estructural va sorgir com un àrea d'aplicació prometedora.
No obstant això, a causa de la natura iterativa dels processos d'optimització de forma, la manipulació dels models numèrics en grans quantitats, junt amb l'error de discretització dels mètodes numèrics, pot fins i tot dissuadir de l'ús d'aquestes tècniques (o d'explotar tot el seu potencial), perquè al mateix temps els cicles de desenvolupament de nous productes s'estan acurtant.
Esta Tesi se centra en la formulació d'una metodologia 3D basada en el Cartesian-grid Finite Element Method (cgFEM) com a ferramenta per una anàlisi numèrica eficient i sòlida. Esta metodologia pertany a la categoria de tècniques de discretització Immersed Boundary on el concepte clau és expandir el problema d'anàlisi estructural a un domini d'aproximació fàcil de mallar que conté la frontera del domini físic.
L'utilització de mallats cartesians proporciona una plataforma natural per l'optimització de forma estructural perquè el domini numèric està separat del model físic, que podria canviar lliurement durant el procediment d'optimització sense alterar la discretització subjacent. A més, un altre argument positiu el trobem en què la generació de malla es converteix en una tasca trivial, ja que la discretització del domini numèric i la seua manipulació, en coalició amb l'eficiència d'una estructura jeràrquica de dades, poden ser explotats per estalviar cost computacional.
Tot i això, estos avantatges poden ser qüestionats per diversos problemes numèrics. Bàsicament, l'esforç computacional s'ha desplaçat. De l'ús de costosos algoritmes de mallat ens movem cap a l'ús de, per exemple, esquemes d'integració numèrica elaborats per poder capturar la discrepància entre la frontera del domini geomètric i la malla d'elements finits que ho embeu. Per això, fem ús, d'una banda, d'una formulació d'estabilització per imposar condicions de contorn i, d'un altra, desevolupem noves tècniques per poder captar la representació exacta dels models geomètrics
Per completar la implementació d'un mètode d'optimització de forma estructural es fa ús d'una formulació adjunta per derivar les sensibilitats de disseny requerides pels algoritmes basats en gradient. Les derivades no són únicament variables requerides pel procés, sinó una poderosa ferramenta per poder projectar informació entre diferents dissenys o, fins i tot, projectar la informació per crear malles h-adaptades sense passar per un procés complet de refinament h-adaptatiu.
Les millores proposades s'evidencien en els exemples numèrics presentats en esta Tesi. Estes anàlisis mostren clarament el comportament superior de la tecnologia cgFEM en tant a precisió numèrica i eficiència computacional. Així, l'enfocament cgFEM es postula com una ferramenta adient per l'optimització de forma. / Marco Alacid, O. (2017). Structural Shape Optimization Based On The Use Of Cartesian Grids [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/86195 / Compendio
|
127 |
Computation of electromagnetic fields in assemblages of biological cells using a modified finite difference time domain scheme : computational electromagnetic methods using quasi-static approximate version of FDTD, modified Berenger absorbing boundary and Floquet periodic boundary conditions to investigate the phenomena in the interaction between EM fields and biological systemsSee, Chan Hwang January 2007 (has links)
There is an increasing need for accurate models describing the electrical behaviour of individual biological cells exposed to electromagnetic fields. In this area of solving linear problem, the most frequently used technique for computing the EM field is the Finite-Difference Time-Domain (FDTD) method. When modelling objects that are small compared with the wavelength, for example biological cells at radio frequencies, the standard Finite-Difference Time-Domain (FDTD) method requires extremely small time-step sizes, which may lead to excessive computation times. The problem can be overcome by implementing a quasi-static approximate version of FDTD, based on transferring the working frequency to a higher frequency and scaling back to the frequency of interest after the field has been computed. An approach to modeling and analysis of biological cells, incorporating the Hodgkin and Huxley membrane model, is presented here. Since the external medium of the biological cell is lossy material, a modified Berenger absorbing boundary condition is used to truncate the computation grid. Linear assemblages of cells are investigated and then Floquet periodic boundary conditions are imposed to imitate the effect of periodic replication of the assemblages. Thus, the analysis of a large structure of cells is made more computationally efficient than the modeling of the entire structure. The total fields of the simulated structures are shown to give reasonable and stable results at 900MHz, 1800MHz and 2450MHz. This method will facilitate deeper investigation of the phenomena in the interaction between EM fields and biological systems. Moreover, the nonlinear response of biological cell exposed to a 0.9GHz signal was discussed on observing the second harmonic at 1.8GHz. In this, an electrical circuit model has been proposed to calibrate the performance of nonlinear RF energy conversion inside a high quality factor resonant cavity with known nonlinear device. Meanwhile, the first and second harmonic responses of the cavity due to the loading of the cavity with the lossy material will also be demonstrated. The results from proposed mathematical model, give good indication of the input power required to detect the weakly effects of the second harmonic signal prior to perform the measurement. Hence, this proposed mathematical model will assist to determine how sensitivity of the second harmonic signal can be detected by placing the required specific input power.
|
128 |
Aeolian dune-field boundary conditions and dune interactions related to dune-field pattern formation on Earth and MarsEwing, Ryan Cotter 02 June 2010 (has links)
Aeolian dune fields form some of the most striking patterns on Earth and Mars. These patterns reflect the internal dune dynamics of self-organization within boundary conditions, which are the unique set of environmental variables within which each dune field evolves. Dune-field pattern self-organization occurs because of interactions between the dunes themselves and the rich diversity of dune-field patterns arises because boundary conditions alter the type and frequency of dune interactions. These hypotheses are explored in three parts. First, source-area geometry and areal limits are two newly recognized boundary conditions. Measurements of crest length and spacing from satellite images of dune patterns with point and line source-area geometries show an increase in crest length and spacing over distance, whereas crest length and spacing in plane-sourced patterns emerge equally across the dune field. The areal limit boundary condition is the size and shape of the dune field itself. Empirical measurements from ten dune fields ranging over four orders of magnitude in area show that spacing increases and defect density decreases as the area of the dune field increases. A simple analytical model indicates that dune fields that are five times longer in the dune migration direction can achieve the greatest spacing for a given area. Second, time-series aerial photographs and airborne LiDAR show that fully developed, crescentic aeolian dunes at White Sands, New Mexico, interact and the dune pattern organizes in systematically similar ways as wind ripples and subaqueous dunes and ripples. Interaction type, classified as constructive, regenerative or neutral in terms of pattern development, changes spatially with the pattern because of the imposition of the line-source area and sediment availability boundary conditions. Upwind dominance by constructive interactions at the field line-source yields to neutral and regenerative interactions in the sediment availability-limited field center. Third, the dune-field pattern in the Olympia Undae Dune Field on Mars is comprised of two generations of dunes. This scenario of pattern reformation with a new wind regime shows that the emergence of the younger pattern is controlled by the boundary condition of the antecedent dune topography imposed upon the interaction between the younger and older patterns. / text
|
129 |
FINITE ELEMENT ANALYSIS OF THE CONTACT DEFORMATION OF PIEZOELECTRIC MATERIALSLiu, Ming 01 January 2012 (has links)
Piezoelectric materials in the forms of both bulk and thin-film have been widely used as actuators and sensors due to their electromechanical coupling. The characterization of piezoelectric materials plays an important role in determining device performance and reliability. Instrumented indentation is a promising method for probing mechanical as well as electrical properties of piezoelectric materials.
The use of instrumented indentation to characterize the properties of piezoelectric materials requires analytical relations. Finite element methods are used to analyze the indentation of piezoelectric materials under different mechanical and electrical boundary conditions.
For indentation of a piezoelectric half space, a three-dimensional finite element model is used due to the anisotropy and geometric nonlinearity. The analysis is focused on the effect of angle between poling direction and indentation-loading direction on indentation responses.
For the indentation by a flat-ended cylindrical indenter, both insulating indenter and conducting indenter without a prescribed electric potential are considered. The results reveal that both the indentation load and the magnitude of the indentation-induced potential at the contact center increase linearly with the indentation depth.
For the indentation by an insulating Berkovich indenter, both frictionless and frictional contact between the indenter and indented surface are considered. The results show the indentation load is proportional to the square of the indentation depth, while the indentation-induced potential at the contact center is proportional to the indentation depth.
Spherical indentation of piezoelectric thin films is analyzed in an axisymmetric finite element model, in which the poling direction is anti-parallel to the indentation-loading direction.
Six different combinations of electrical boundary conditions are considered for a thin film perfectly bonded to a rigid substrate under the condition of the contact radius being much larger than the film thickness. The indentation load is found to be proportional to the square of the indentation depth.
To analyze the decohesion problem between a piezoelectric film and an elastic substrate, a traction-separation law is used to control the interfacial behavior between a thin film and an electrically grounded elastic substrate. The discontinuous responses at the initiation of interfacial decohesion are found to depend on interface and substrate properties.
|
130 |
Contribution à la modélisation de la diffusion électromagnétique par des surfaces rugueuses à partir de méthodes rigoureuses / Contribution to the modelling of electromagnetic scattering by rough surfaces from rigorous methodsTournier, Simon 22 March 2012 (has links)
Cette thèse traite de la diffusion par des surfaces rugueuses monodimensionnelles. Les surfaces présentant des petites échelles de variations nécessitent une discrétisation fine pour représenter les effets de diffusion sur le champ diffracté, ce qui augmente les coûts numériques. Deux aspects sont considérés : la réduction de la taille du problème en construisant une condition aux limiteséquivalente traduisant les effets des variations rapides et la réduction du nombre d’itérations nécessaires pour résoudre le système linéaire issu de la méthode des moments par une méthode basée sur les sous-espaces de Krylov. En ce qui concerne la réduction de la taille du problème, une technique d’homogénéisation est utilisée pour transformer la condition aux limites posée sur lasurface rugueuse par des paramètres effectifs. Ces paramètres sont déterminés par des problèmes auxiliaires qui tiennent compte des échelles fines de la surface. Dans le cas de surfaces parfaitement métalliques, la procédure est appliquée en polarisation Transverse Magnétique (TM) et Transverse Électrique (TE). Une impédance équivalente de Léontovich d’ordre 1 est déduite.Le procédure est automatique et les ordres supérieurs sont dérivés pour la polarisation TM. La procédure d’homogénéisation est aussi appliquée pour des interfaces rugueuses séparant deux milieux diélectriques. En ce qui concerne la réduction du nombre d’itérations, un préconditionneur, basé sur des considérations physiques, est construit à partir des modes de Floquet. Bien que le préconditionneur soit initialement élaboré pour des surfaces périodiques, nous montrons qu’il est aussi efficace pour des surfaces tronquées éclairées par une onde plane. L’efficacité des deux aspects présentés dans cette thèse est numériquement illustrée pour des configurations d’intérêt. / This work is about the scattering by monodimensional rough surfaces. Surfaces presenting small scales of variations need a very refined mesh to finally capture the scattering field behaviour what increases the computational cost. Two aspects are considered : the reduction of the problemsize through an effective boundary condition incorporating the effect of rapid variations and the reduction of the number of iterations to solve the linear system arising from method of moments by a method based on Krylov subspace. Firstly, an homogenization process is used to convert the boundary condition on the rough interface into effective parameters. These parameters are determined by the solutions of auxiliary problems which involve the detailed profile of the interface. In the case of perfectly metallic surfaces, the process is applied to the E- and H-polarization and an Leontovich impedance of order 1 is deduced. The process is automatic and higher orders are derived for E-polarization. The homogenization process is also applied to dielectric rough interfaces. Secondly, a physically-based preconditioner is built with Floquet’s modes. Although the preconditioner has been designed for periodical surfaces, it was shown to be efficient in the case of truncated surfaces illuminated by a plane wave. The efficiency of both aspects is numerically illustrated for some configurations of interest.
|
Page generated in 0.0928 seconds