• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 196
  • 151
  • 21
  • 13
  • 4
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 441
  • 441
  • 320
  • 160
  • 153
  • 147
  • 116
  • 112
  • 72
  • 64
  • 60
  • 52
  • 48
  • 48
  • 41
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
191

A Fast Multipole Boundary Element Method for the Thin Plate Bending Problem

Huang, Shuo 15 October 2013 (has links)
No description available.
192

An Inverse Algorithm To Estimate Thermal Contact Resistance

Gill, Jennifer 01 January 2005 (has links)
Thermal systems often feature composite regions that are mechanically mated. In general, there exists a significant temperature drop across the interface between such regions which may be composed of similar or different materials. The parameter characterizing this temperature drop is the thermal contact resistance, which is defined as the ratio of the temperature drop to the heat flux normal to the interface. The thermal contact resistance is due to roughness effects between mating surfaces which cause certain regions of the mating surfaces to loose contact thereby creating gaps. In these gap regions, the principal modes of heat transfer are conduction across the contacting regions of the interface, conduction or natural convection in the fluid filling the gap regions of the interface, and radiation across the gap surfaces. Moreover, the contact resistance is a function of contact pressure as this can significantly alter the topology of the contact region. The thermal contact resistance is a phenomenologically complex function and can significantly alter prediction of thermal models of complex multi-component structures. Accurate estimates of thermal contact resistances are important in engineering calculations and find application in thermal analysis ranging from relatively simple layered and composite materials to more complex biomaterials. There have been many studies devoted to the theoretical predictions of thermal contact resistance and although general theories have been somewhat successful in predicting thermal contact resistances, most reliable results have been obtained experimentally. This is due to the fact that the nature of thermal contact resistance is quite complex and depends on many parameters including types of mating materials, surface characteristics of the interfacial region such as roughness and hardness, and contact pressure distribution. In experiments, temperatures are measured at a certain number of locations, usually close to the contact surface, and these measurements are used as inputs to a parameter estimation procedure to arrive at the sought-after thermal contact resistance. Most studies seek a single value for the contact resistance, while the resistance may in fact also vary spatially. In this thesis, an inverse problem (IP) is formulated to estimate the spatial variation of the thermal contact resistance along an interface in a two-dimensional configuration. Temperatures measured at discrete locations using embedded sensors appropriately placed in proximity to the interface provide the additional information required to solve the inverse problem. A superposition method serves to determine sensitivity coefficients and provides guidance in the location of the measuring points. Temperature measurements are then used to define a regularized quadratic functional that is minimized to yield the contact resistance between the two mating surfaces. A boundary element method analysis (BEM) provides the temperature field under current estimates of the contact resistance in the solution of the inverse problem when the geometry of interest is not regular, while an analytical solution can be used for regular geometries. Minimization of the IP functional is carried out by the Levenberg-Marquadt method or by a Genetic Algorithm depending on the problem under consideration. The L-curve method of Hansen is used to choose the optimal regularization parameter. A series of numerical examples are provided to demonstrate and validate the approach.
193

Measured and predicted acoustic performance of vertically louvred noise barriers.

Watts, Gregory R., Hothershall, D.C., Horoshenkov, Kirill V. January 2001 (has links)
No / The paper describes model testing of the acoustic performance of vertically louvred and the corresponding predicted performance using a modified Boundary Element Method (BEM) program. The program was developed in a previous phase of the Transport Research Laboratory's research into the performance of modified barriers. Measurements on 1/20th scale model barriers were carried out in a semi-anechoic chamber designed primarily for scale model experiments to investigate outdoor sound propagation under controlled conditions. It was concluded from measurements in the scale model facility that the modified BEM code provided an adequate description of the leakage of sound through louvred barriers. The program was subsequently used to examine the performance of various designs of barrier in order to identify likely cost effective designs.
194

High Order Implementation in Integral Equations

Marshall, Joshua P 09 August 2019 (has links)
The present work presents a number of contributions to the areas of numerical integration, singular integrals, and boundary element methods. The first contribution is an elemental distortion technique, based on the Duffy transformation, used to improve efficiency for the numerical integration of near hypersingular integrals. Results show that this method can reduce quadrature expense by up to 75 percent over the standard Duffy transformation. The second contribution is an improvement to integration of weakly singular integrals by using regularization to smooth weakly singular integrals. Errors show that the method may reduce errors by several orders of magnitude for the same quadrature order. The final work investigated the use of regularization applied to hypersingular integrals in the context of the boundary element method in three dimensions. This work showed that by using the simple solutions technique, the BEM is reduced to a weakly singular form which directly supports numerical integration. Results support that the method is more efficient than the state-of-the-art.
195

APPLICATION OF MULTIPOLE EXPANSIONS TO BOUNDARY ELEMENT METHOD

MITRA, KAUSIK PRADIP 16 September 2002 (has links)
No description available.
196

Application of the Hypersingular Boundary Integral Equation in Evaluating Stress Intensity Factors for 2D Elastostatic Fracture Mechanics Problems

Jagtap, Nimish V. January 2006 (has links)
No description available.
197

ADAPTIVE FAST MULTIPOLE BOUNDARY ELEMENT METHODS FOR THREE-DIMENSIONAL POTENTIAL AND ACOUSTIC WAVE PROBLEMS

SHEN, LIANG January 2007 (has links)
No description available.
198

New Developments in Fast Boundary Element Method

Bapat, Milind S. 19 April 2012 (has links)
No description available.
199

Elastic and Viscoelastic Responses of Anisotropic Media Subjected to Dislocation Sources

Molavi Tabrizi, Amirhossein January 2015 (has links)
No description available.
200

Formulation of steady-state and transient potential problems using boundary elements

Druma, Calin January 1999 (has links)
No description available.

Page generated in 0.0673 seconds