• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 131
  • 94
  • 14
  • 11
  • 3
  • 3
  • 2
  • 2
  • 1
  • Tagged with
  • 296
  • 296
  • 296
  • 139
  • 137
  • 109
  • 104
  • 45
  • 43
  • 39
  • 37
  • 36
  • 36
  • 35
  • 31
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

Wavelets for the fast solution of boundary integral equations

Harbrecht, Helmut, Schneider, Reinhold 06 April 2006 (has links) (PDF)
This paper presents a wavelet Galerkin scheme for the fast solution of boundary integral equations. Wavelet Galerkin schemes employ appropriate wavelet bases for the discretization of boundary integral operators. This yields quasi-sparse system matrices which can be compressed to O(N_J) relevant matrix entries without compromising the accuracy of the underlying Galerkin scheme. Herein, O(N_J) denotes the number of unknowns. The assembly of the compressed system matrix can be performed in O(N_J) operations. Therefore, we arrive at an algorithm which solves boundary integral equations within optimal complexity. By numerical experiments we provide results which corroborate the theory.
92

Méthodes efficaces pour la diffraction acoustique en 2 et 3 dimensions : préconditionnement sur des domaines singuliers et convolution rapide. / Efficient methods for acoustic scattering in 2 and 3 dimensions : preconditioning on singular domains and fast convolution.

Averseng, Martin 14 October 2019 (has links)
Cette thèse porte sur le problème de la diffration acoustique par un obstacle et sa résolution numérique par la méthode des éléments finis de frontière. Dans les trois premiers chapitres, on s'intéresse au cas où l'obstacle possède des singularités géométriques. Nous traitons le cas particulier des singularités de bord, courbes ouvertes en dimension 2, et surfaces ouvertes en dimension 3. Nous introduisons un formalisme qui permet de retrouver les bonnes propriétés de la méthode pour des objets réguliers. Une fonction de poids est définie sur les objets diffractant, et les opérateurs intégraux usuels (simple-couche et hypersingulier) sont renormalisés de manière adéquate par ce poids. Des préconditioneurs sont proposés sous la forme de racines carrées d'opérateurs locaux. En dimension 2, nous proposons une analyse théorique et numérique complète du problème. Nous montrons en particulier que les opérateurs intégraux renormalisés font partie d'une classe d'opérateurs pseudo-différentiels sur des courbes ouvertes, que nous introduisons et étudions ici. Le calcul pseudo-différentiel ainsi développé nous permet de calculer des paramétrices des les opérateurs intégraux qui correspondent aux versions continues de nos préconditionneurs. En dimension 3, nous montrons comment ces idées se généralisent théoriquement et numériquement dans le cas pour des surfaces ouvertes. Dans le dernier chapitre, nous introduisons une nouvelle méthode de calcul rapide des convolutions par des fonctions radiales en dimension 2, l'une des tâches les plus coûteuses en temps dans la méthode des éléments finis de frontière. Notre algorithme repose sur l'algorithme de transformée de Fourier rapide non uniforme, et est la généralisation un algorithme analogue disponible en dimension 3, la décomposition creuse en sinus cardinal. / In this thesis, we are concerned with the numerical resolution of the problem of acoustic waves scattering by an obstacle in dimensions 2 and 3, with the boundary element method. In the first three chapters, we consider objects with singular geometries. We focus on the case of objects with edge singularities, first open curves in the plane, and then open surfaces in dimension 3. We present a formalism that allows to restore the good properties that held for smooth objects. A weight function is defined on the scattering object, and the usual layer potentials (single-layer and hypersingular) are adequately rescaled by this weight function. Suitable preconditioners are proposed, that take the form of square roots of local operators. In dimension 2, we give a complete theoretical and numerical analysis of the problem. We show in particular that the weighted layer potentials belong to a class of pseudo-differential operators on open curves that we define and analyze here. The pseudo-differential calculus thus developed allows us to compute parametrices for the weighted layer potentials, which correspond to the continuous versions of our preconditioners. In dimension 3, we show how those ideas can be extended theoretically and numerically, for the particular case of the scattering by an infinitely thin disk. In the last chapter, we present a new method for the rapid evaluation of discrete convolutions by radial functions in dimension 2. Such convolutions represent a computational bottleneck in the boundary element methods. Our algorithm relies on the non-uniform fast Fourier transform and generalizes to dimension 2 an analogous algorithm available in dimension 3, namely the sparse cardinal sine decomposition.
93

Aplikace metody hraničních prvků na některé problémy trhliny v blízkosti bi-materiálového rozhraní / An aplication of the boundary element method to the problem of the crack in the vicinity of the bi-material interface

Sedláček, Stanislav January 2012 (has links)
There are many shape and other changes in the engineering constructions. These changes cause the concentration of the stress. There is a higher probability of the crack initiation in the vicinity of these stress concentrators. The problems of the crack can be solved nowadays only with help of sufficient numeric tools. The Boundary Element Method is one of the many numerical tools which offer the solution of some problems of the mechanics. The goal of this diploma thesis is to formulate boundary element method for the plane problem of the linear elasticity for izotropic material with different types of the stress concentrators.
94

Metoda hraničních vířivých elementů pro 2D proudění kapalin / Boundary Vorticity Element Method for 2D Fluid Flow

Fic, Miloslav January 2013 (has links)
This master’s thesis deals with boundary vorticity element method for 2D fluid flow. The aim of this work is to program this method with continuous vorticity lay-out and to validate method with various boundary conditions. The computed results are presented in this work. Advantages and disadvantages of each one boundary condition are pointed out. New one boundary condition for boundary vorticity element method is applied in this thesis.
95

Wavelets for the fast solution of boundary integral equations

Harbrecht, Helmut, Schneider, Reinhold 06 April 2006 (has links)
This paper presents a wavelet Galerkin scheme for the fast solution of boundary integral equations. Wavelet Galerkin schemes employ appropriate wavelet bases for the discretization of boundary integral operators. This yields quasi-sparse system matrices which can be compressed to O(N_J) relevant matrix entries without compromising the accuracy of the underlying Galerkin scheme. Herein, O(N_J) denotes the number of unknowns. The assembly of the compressed system matrix can be performed in O(N_J) operations. Therefore, we arrive at an algorithm which solves boundary integral equations within optimal complexity. By numerical experiments we provide results which corroborate the theory.
96

A Fast Multipole Boundary Element Method for the Thin Plate Bending Problem

Huang, Shuo 15 October 2013 (has links)
No description available.
97

An Inverse Algorithm To Estimate Thermal Contact Resistance

Gill, Jennifer 01 January 2005 (has links)
Thermal systems often feature composite regions that are mechanically mated. In general, there exists a significant temperature drop across the interface between such regions which may be composed of similar or different materials. The parameter characterizing this temperature drop is the thermal contact resistance, which is defined as the ratio of the temperature drop to the heat flux normal to the interface. The thermal contact resistance is due to roughness effects between mating surfaces which cause certain regions of the mating surfaces to loose contact thereby creating gaps. In these gap regions, the principal modes of heat transfer are conduction across the contacting regions of the interface, conduction or natural convection in the fluid filling the gap regions of the interface, and radiation across the gap surfaces. Moreover, the contact resistance is a function of contact pressure as this can significantly alter the topology of the contact region. The thermal contact resistance is a phenomenologically complex function and can significantly alter prediction of thermal models of complex multi-component structures. Accurate estimates of thermal contact resistances are important in engineering calculations and find application in thermal analysis ranging from relatively simple layered and composite materials to more complex biomaterials. There have been many studies devoted to the theoretical predictions of thermal contact resistance and although general theories have been somewhat successful in predicting thermal contact resistances, most reliable results have been obtained experimentally. This is due to the fact that the nature of thermal contact resistance is quite complex and depends on many parameters including types of mating materials, surface characteristics of the interfacial region such as roughness and hardness, and contact pressure distribution. In experiments, temperatures are measured at a certain number of locations, usually close to the contact surface, and these measurements are used as inputs to a parameter estimation procedure to arrive at the sought-after thermal contact resistance. Most studies seek a single value for the contact resistance, while the resistance may in fact also vary spatially. In this thesis, an inverse problem (IP) is formulated to estimate the spatial variation of the thermal contact resistance along an interface in a two-dimensional configuration. Temperatures measured at discrete locations using embedded sensors appropriately placed in proximity to the interface provide the additional information required to solve the inverse problem. A superposition method serves to determine sensitivity coefficients and provides guidance in the location of the measuring points. Temperature measurements are then used to define a regularized quadratic functional that is minimized to yield the contact resistance between the two mating surfaces. A boundary element method analysis (BEM) provides the temperature field under current estimates of the contact resistance in the solution of the inverse problem when the geometry of interest is not regular, while an analytical solution can be used for regular geometries. Minimization of the IP functional is carried out by the Levenberg-Marquadt method or by a Genetic Algorithm depending on the problem under consideration. The L-curve method of Hansen is used to choose the optimal regularization parameter. A series of numerical examples are provided to demonstrate and validate the approach.
98

Measured and predicted acoustic performance of vertically louvred noise barriers.

Watts, Gregory R., Hothershall, D.C., Horoshenkov, Kirill V. January 2001 (has links)
No / The paper describes model testing of the acoustic performance of vertically louvred and the corresponding predicted performance using a modified Boundary Element Method (BEM) program. The program was developed in a previous phase of the Transport Research Laboratory's research into the performance of modified barriers. Measurements on 1/20th scale model barriers were carried out in a semi-anechoic chamber designed primarily for scale model experiments to investigate outdoor sound propagation under controlled conditions. It was concluded from measurements in the scale model facility that the modified BEM code provided an adequate description of the leakage of sound through louvred barriers. The program was subsequently used to examine the performance of various designs of barrier in order to identify likely cost effective designs.
99

APPLICATION OF MULTIPOLE EXPANSIONS TO BOUNDARY ELEMENT METHOD

MITRA, KAUSIK PRADIP 16 September 2002 (has links)
No description available.
100

Application of the Hypersingular Boundary Integral Equation in Evaluating Stress Intensity Factors for 2D Elastostatic Fracture Mechanics Problems

Jagtap, Nimish V. January 2006 (has links)
No description available.

Page generated in 0.275 seconds