• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 8
  • 8
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Stable boundary conditions for the shallow water equations

Burgess, N. A. January 1987 (has links)
No description available.
2

Boundary value problems with Toeplitz conditions

Schulze, Bert-Wolfgang, Tarkhanov, Nikolai January 2005 (has links)
We describe a new algebra of boundary value problems which contains Lopatinskii elliptic as well as Toeplitz type conditions. These latter are necessary, if an analogue of the Atiyah-Bott obstruction does not vanish. Every elliptic operator is proved to admit up to a stabilisation elliptic conditions of such a kind. Corresponding boundary value problems are then Fredholm in adequate scales of spaces. The crucial novelty consists of the new type of weighted Sobolev spaces which serve as domains of pseudodifferential operators and which fit well to the nature of operators.
3

Analytic Functions with Real Boundary Values in Smirnov Classes E<sup>p</sup>

De Castro, Lisa 01 January 2013 (has links)
This thesis concerns the classes of analytic functions on bounded, n-connected domains known as the Smirnov classes Ep, where p > 0. Functions in these classes satisfy a certain growth condition and have a relationship to the more well known classes of functions known as the Hardy classes Hp. In this thesis I will show how the geometry of a given domain will determine the existence of non-constant analytic functions in Smirnov classes that possess real boundary values. This is a phenomenon that does not occur among functions in the Hardy classes. The preliminary and background information is given in Chapters 1 and 3 while the main results of this thesis are presented in Chapters 2 and 4. In Chapter 2, I will consider the case of the simply connected domain and the boundary characteristics that allow non-constant analytic functions with real boundary values in certain Smirnov classes. Chapter 4 explores the case of an n-connected domain and the sufficient conditions for which the aforementioned functions exist. In Chapter 5, I will discuss how my results for simply connected domains extend Neuwirth-Newman's Theorem and finish with an open problem for n-connected domains.
4

Toepassing van hidrodinamiese modelle om kenmerkende randwaardes, geldig vir vloedbesproeiing in Suid-Afrika, af te lei / G.H.J. Kruger

Kruger, Gert Hendrik Jacobus January 2007 (has links)
Thesis (M.Ing. (Development and Management))--North-West University, Potchefstroom Campus, 2008.
5

Boundary values of plurisubharmonic functions and related topics

Kemppe, Berit January 2009 (has links)
This thesis consists of three papers concerning problems related to plurisubharmonic functions on bounded hyperconvex domains, in particular boundary values of such functions. The papers summarized in this thesis are:* Paper I Urban Cegrell and Berit Kemppe, Monge-Ampère boundary measures, Ann. Polon. Math. 96 (2009), 175-196.* Paper II Berit Kemppe, An ordering of measures induced by plurisubharmonic functions, manuscript (2009).* Paper III Berit Kemppe, On boundary values of plurisubharmonic functions, manuscript (2009).In the first paper we study a procedure for sweeping out Monge-Ampère measures to the boundary of the domain. The boundary measures thus obtained generalize measures studied by Demailly. A number of properties of the boundary measures are proved, and we describe how boundary values of bounded plurisubharmonic functions can be associated to the boundary measures.In the second paper, we study an ordering of measures induced by plurisubharmonic functions. This ordering arises naturally in connection with problems related to negative plurisubharmonic functions. We study maximality with respect to the ordering and a related notion of minimality for certain plurisubharmonic functions. The ordering is then applied to problems of weak*-convergence of measures, in particular Monge-Ampère measures.In the third paper we continue the work on boundary values in a more general setting than in Paper I. We approximate measures living on the boundary with measures on the interior of the domain, and present conditions on the approximation which makes the procedure suitable for defining boundary values of certain plurisubharmonic functions.
6

Toepassing van hidrodinamiese modelle om kenmerkende randwaardes, geldig vir vloedbesproeiing in Suid-Afrika, af te lei / G.H.J. Kruger

Kruger, Gert Hendrik Jacobus January 2007 (has links)
Thesis (M.Ing. (Development and Management))--North-West University, Potchefstroom Campus, 2008.
7

Toepassing van hidrodinamiese modelle om kenmerkende randwaardes, geldig vir vloedbesproeiing in Suid-Afrika, af te lei / G.H.J. Kruger

Kruger, Gert Hendrik Jacobus January 2007 (has links)
Thesis (M.Ing. (Development and Management))--North-West University, Potchefstroom Campus, 2008.
8

Studies of the Boundary Behaviour of Functions Related to Partial Differential Equations and Several Complex Variables

Persson, Håkan January 2015 (has links)
This thesis consists of a comprehensive summary and six scientific papers dealing with the boundary behaviour of functions related to parabolic partial differential equations and several complex variables. Paper I concerns solutions to non-linear parabolic equations of linear growth. The main results include a backward Harnack inequality, and the Hölder continuity up to the boundary of quotients of non-negative solutions vanishing on the lateral boundary of an NTA cylinder. It is also shown that the Riesz measure associated with such solutions has the doubling property. Paper II is concerned with solutions to linear degenerate parabolic equations, where the degeneracy is controlled by a weight in the Muckenhoupt class 1+2/n. Two main results are that non-negative solutions which vanish continuously on the lateral boundary of an NTA cylinder satisfy a backward Harnack inequality and that the quotient of two such functions is Hölder continuous up to the boundary. Another result is that the parabolic measure associated to such equations has the doubling property. In Paper III, it is shown that a bounded pseudoconvex domain whose boundary is α-Hölder for each 0&lt;α&lt;1, is hyperconvex. Global estimates of the exhaustion function are given. In Paper IV, it is shown that on the closure of a domain whose boundary locally is the graph of a continuous function, all plurisubharmonic functions with continuous boundary values can be uniformly approximated by smooth plurisubharmonic functions defined in neighbourhoods of the closure of the domain. Paper V studies  Poletsky’s notion of plurisubharmonicity on compact sets. It is shown that a function is plurisubharmonic on a given compact set if, and only if, it can be pointwise approximated by a decreasing sequence of smooth plurisubharmonic functions defined in neighbourhoods of the set. Paper VI introduces the notion of a P-hyperconvex domain. It is shown that in such a domain, both the Dirichlet problem with respect to functions plurisubharmonic on the closure of the domain, and the problem of approximation by smooth plurisubharmoinc functions in neighbourhoods of the closure of the domain have satisfactory answers in terms of plurisubharmonicity on the boundary.

Page generated in 0.0591 seconds