Spelling suggestions: "subject:"boundaryelement method"" "subject:"boundaryseemed method""
61 |
Optimization of MEMS Microphone Size Parameters by BEM Sound Field Analysis and Taguchi MethodYang, Ming-Ta 24 November 2010 (has links)
Since the micro-electro mechanical system microphone, MEMS microphone, has the advantages of superior sound quality, low power consumption, higher temperature resistance and anti-noise ability in used. The researchers therefore have studied the functions of MEMS microphone since 1980s. The MEMS microphones is applied as the part of 3G mobile phone in the market. Though the functions of microphone are improved by manufacturing process technique and new material designed, this study tends to provide a new, low-cost and rapid design idea to gain the performance in chamber of microphone. Taguchi method and BEASY software, which is boundary element method, are combined to evaluate the results of the design in sound field. Taguchi method is a famous method in industrial design to find out relations between system parameters and chamber size. BEASY is a tool for sound field analysis in the research. The result from Taguchi method appears the sound pressure level gain about 2.2 dB to 2.4 dB due to the change of microphone chamber size only. It is also interested in studying the optimization design for position of microphone. It is displayed that the location of port is closer to the boundary of chip will also increase about 0.3 dB to 0.6dB sound pressure level in sound field. The higher frequency of sound source will also create larger sound pressure level at two corners on the port.
|
62 |
Pressure transient testing and productivity analysis for horizontal wellsCheng, Yueming 15 November 2004 (has links)
This work studied the productivity evaluation and well test analysis of horizontal wells. The major components of this work consist of a 3D coupled reservoir/wellbore model, a productivity evaluation, a deconvolution technique, and a nonlinear regression technique improving horizontal well test interpretation.
A 3D coupled reservoir/wellbore model was developed using the boundary element method for realistic description of the performance behavior of horizontal wells. The model is able to flexibly handle multiple types of inner and outer boundary conditions, and can accurately simulate transient tests and long-term production of horizontal wells. Thus, it can serve as a powerful tool in productivity evaluation and analysis of well tests for horizontal wells.
Uncertainty of productivity prediction was preliminarily explored. It was demonstrated that the productivity estimates can be distributed in a broad range because of the uncertainties of reservoir/well parameters.
A new deconvolution method based on a fast-Fourier-transform algorithm is presented. This new technique can denoise "noisy" pressure and rate data, and can deconvolve pressure drawdown and buildup test data distorted by wellbore storage. For cases with no rate measurements, a "blind" deconvolution method was developed to restore the pressure response free of wellbore storage distortion, and to detect the afterflow/unloading rate function using Fourier analysis of the observed pressure data. This new deconvolution method can unveil the early time behavior of a reservoir system masked by variable-wellbore-storage distortion, and thus provides a powerful tool to improve pressure transient test interpretation. The applicability of the method is demonstrated with a variety of synthetic and actual field cases for both oil and gas wells.
A practical nonlinear regression technique for analysis of horizontal well testing is presented. This technique can provide accurate and reliable estimation of well-reservoir parameters if the downhole flow rate data are available. In the situation without flow rate measurement, reasonably reliable parameter estimation can be achieved by using the detected flow rate from blind deconvolution. It has the advantages of eliminating the need for estimation of the wellbore storage coefficient and providing reasonable estimates of effective wellbore length. This technique provides a practical tool for enhancement of horizontal well test interpretation, and its practical significance is illustrated by synthetic and actual field cases.
|
63 |
Solving three-dimensional problems in natural and hydraulic fracture development : insight from displacement discontinuity modelingSheibani, Farrokh 26 September 2013 (has links)
Although many fracture models are based on two-dimensional plane strain approximations, accurately predicting fracture propagation geometry requires accounting for the three-dimensional aspects of fractures. In this study, we implemented 3-D displacement discontinuity (DD) boundary element modeling to investigate the following intrinsically 3-D natural or hydraulic fracture propagation problems: the effect of fracture height on lateral propagation of vertical natural fractures, joint development in the vicinity of normal faults, and hydraulic fracture height growth and non-planar propagation paths. Fracture propagation is controlled by stress intensity factor (SIF) and its determination plays a central role in LEFM. The DD modeling is used to evaluate SIF in Mode I, II and III at the tip of an arbitrarily-shaped embedded crack by using crack-tip element displacement discontinuity. We examine the accuracy of SIF calculation is for rectangular, penny-shaped, and elliptical planar cracks. Using the aforementioned model for lateral propagation of overlapping fractures shows that the curving path of overlapping fractures is strongly influenced by the spacing-to-height ratio of fractures, as well as the differential stress magnitude. We show that the angle of intersection between two non-coincident but parallel en-echelon fractures depends strongly on the fracture height-to-spacing ratio, with intersection angles being asymptotic for "tall" fractures (large height-to-spacing ratios) and nearly orthogonal for "short" fractures. Stress perturbation around normal faults is three-dimensionally heterogeneous. That perturbation can result in joint development at the vicinity of normal faults. We examine the geometrical relationship between genetically related normal faults and joints in various geologic environments by considering a published case study of fault-related joints in the Arches National Park region, Utah. The results show that joint orientation is dependent on vertical position with respect to the normal fault, the spacing-to-height ratio of sub-parallel normal faults, and Poisson's ratio of the media. Our calculations represent a more physically reasonable match to measured field data than previously published, and we also identify a new mechanism to explain the driving stress for opening mode fracture propagation upon burial of quasi-elastic rocks. Hydraulic fractures may not necessarily start perpendicular to the minimum horizontal remote stress. We use the developed fracture propagation model to explain abnormality in the geometry of fracturing from misaligned horizontal wellbores. Results show that the misalignment causes non-planar lateral propagation and restriction in fracture height and fracture width in wellbore part. / text
|
64 |
Numerical techniques for the design and prediction of performance of marine turbines and propellersXu, Wei, 1986- 21 December 2010 (has links)
The performance of a horizontal axis marine current turbine is predicted by three numerical methods, vortex lattice method MPUF-3A, boundary element method PROPCAV and a commercial RANS solver FLUENT. The predictions are compared with the experimental measurements for the same turbine model. A fully unsteady wake alignment is utilized in order to model the realistic wake geometry of the turbine. A lifting line theory based method is developed to produce the optimum circulation distribution for turbines and propellers and a lifting line theory based database searching method is used to achieve the optimum circulation distribution for tidal turbines. A nonlinear optimization method (CAVOPT-3D) and another database-searching design method (CAVOPT-BASE) are utilized to design the blades of marine current turbines and marine propellers.
A design procedure for the tidal turbine is proposed by using the developed methods successively. Finally, an interactive viscous/potential flow method is utilized to analyze the effect of nonuniform inflow on the performance of tidal turbines. / text
|
65 |
Numerical Simulation of 2D Electrothermal Flow Using Boundary Element MethodRen, Qinlong January 2013 (has links)
Microfluidics and its applications to Lab-on-a-Chip have attracted a lot of attention. Because of the small length scale, the flow is characterized by a low Re number. The governing equations become linear. Boundary element method (BEM) is a very good option for simulating the fluid flow with high accuracy. In this thesis, we present a 2D numerical simulation of the electrothermal flow using BEM. In electrothermal flow the volumetric force is caused by electric field and temperature gradient. The physics is mathematically modeled by (i) Laplace equation for the electrical potential, (ii) Poisson equation for the heat conduction caused by Joule heating, (iii) continuity and Stokes equation for the low Reynolds number flow. We begin by solving the electrical potential and electrical field. The heat conduction is caused by the Joule heating as the heat generation term. Superposition principle is used to solve for the temperature field. The Coulomb and dielectric forces are generated by the electrical field and temperature gradient of the system. The buoyancy force is caused by the non-uniform temperature distribution inside the system. We analyze the Stokes flow problem by superposition of fundamental solution for free-space velocity caused by body force and BEM for the corresponding homogeneous Stokes equation. It is well known that a singularity integral arises when the source point approaches the field point. To overcome this problem, we solve the free-space velocity analytically. For the BEM part, we also calculate all the integrals analytically. With this effort, our solution is more accurate. In addition, we improve the robustness of the matrix system by combining the velocity integral equation with the traction integral equation when we simulate the electrothermal pump. One of our purpose is to design a pump for the microfluidics system. Since the system is a long channel, the flow is fully developed in the area far away from the electrodes. With this assumption, the velocity profile is parabolic at the inlet and outlet of the channel. So we can get appropriate boundary conditions for the BEM part of Stokes equation. Consequently, we can simulate the electrothermal flow in an open channel. In this thesis, we will present the formulation and implementation of BEM to model electrothermal flow. Results of electrical potential, temperature field, Joule heating, electrothermal force, buoyancy force and velocity field will be presented.
|
66 |
Isotropic damage phenomena in saturated porous media : a BEM formulationToledo de Lima Junior, Eduardo 11 January 2011 (has links) (PDF)
This work is devoted to the numerical analysis of saturated porous media, taking into accountthe damage phenomenon on the solid skeleton. The porous media is taken into poroelasticframework, in full-saturated condition, based on the Biot's Theory. A scalar damage model isassumed for this analysis. An implicit Boundary element Method (BEM) formulation, basedon time-independent fundamental solutions, is developed and implemented to couple thefluid flow and the elasto-damage problems. The integration over boundary elements isevaluated by using a numerical Gauss procedure. A semi-analytical scheme for the case oftriangular domain cells is followed to carry out the relevant domain integrals. The non-linearsystem is solved by a Newton-Raphson procedure. Numerical examples are presented, inorder to validate the implemented formulation and to illustrate its efficiency.
|
67 |
DETAILED MODELING OF MUFFLERS WITH PERFORATED TUBES USING SUBSTRUCTURE BOUNDARY ELEMENT METHODDatchanamourty, Balasubramanian 01 January 2004 (has links)
Perforated tubes in mufflers are generally modeled by the transfer impedance approach since modeling the actual geometry of the perforated tubes with holes is very expensive due to the enormity of the boundary elements required. With the development of the substructuring technique which greatly reduces the number of elements required detailed modeling of the perforated tubes has become possible. In this thesis mufflers with perforated tubes are analyzed by modeling the actual geometry and locations of holes on the perforated tubes. The Direct-mixed-body boundary element method with substructuring is used to model the mufflers. Mufflers of various geometry containing perforated tubes with holes of different sizes and porosity are tested. The results obtained from the analyses are compared with the empirical formula results and experimental results. A preliminary investigation on the detailed modeling of flow-through catalytic converters is also conducted.
|
68 |
Modeling of Nonlinear Viscoelastic Solids with Damage Induced Anisotropy, Dissipative Rolling Contact Mechanics, and Synergistic Structural CompositesZehil, Gerard-Philippe Guy May January 2013 (has links)
<p>The main objectives of this research are: (i) to elaborate a unified nonlinear viscoelastic model for rubber-like materials, in finite strain, accounting for material softening under deformation, and for damage induced anisotropy, (ii) to conceive, implement and test, simple, robust and efficient frictional rolling and sliding contact algorithms, in steady-state, as alternatives to existing, general purpose, contact solving strategies, (iii) to develop and verify high fidelity and computationally efficient modeling tools for isotropic and anisotropic viscoelastic objects in steady-state motion, (iv) to investigate, numerically and through experimentation, the influence of various material parameters, including material nonlinearities such at the Payne effect and the Mullins effect, as well as geometric parameters and contact surface conditions, on viscoelastic rolling resistance, and (iv) to explore, analytically and through experimentation, the conditions under which favorable mechanical synergies occur between material components and develop novel composites with improved structural performances.</p><p>A new constitutive model that unifies the behavioral characterizations of rubber-like materials in a broad range of loading regimes is proposed. The model reflects two fundamental aspects of rubber behavior in finite strain: (i) the Mullins effect, and (ii) hyper-viscoelasticity with multiple time scales, including at high strain rates. Suitable means of identifying the system's parameters from simple uniaxial extension tests are explored. A directional approach extending the model to handle softening induced anisotropy is also discussed.</p><p>Novel, simple, and yet robust and efficient algorithms for solving steady-state, frictional, rolling/sliding contact problems, in two and three dimensions are presented. These are alternatives to powerful, well established, but in particular instances, possibly `cumbersome' general-purpose numerical techniques, such as finite-element approaches based on constrained optimization. The proposed algorithms are applied to the rolling resistance of cylinders and spheres.</p><p>Two and three-dimensional boundary element formulations of isotropic, transversely isotropic, and fully orthotropic, compressible and incompressible, viscoelastic layers of finite thickness are presented, in a moving frame of reference. The proposed formulations are based on two-dimensional Fourier series expansions of relevant mechanical fields in the continuum of the layers and support any linear viscoelastic material model characterized by general frequency-domain master-curves. These modeling techniques result in a compliance matrix for the upper boundary of the layers, including the effects of steady-state motion. Such characterizations may be used as components in various problem settings to generate sequences of high fidelity solutions for varying parameters. These are applied, in combination with appropriate contact solvers, to the rolling resistance of rigid cylinders and spheres.</p><p>The problem of a viscoelastic sphere moving across a rigid surface is significantly more complicated than that of a rigid indenter on a viscoelastic plane. The additional difficulties raised by the former may explain why previous work on this topic is so sparse. A new boundary element formulation for the multi-layered viscoelastic coating of a rigid sphere is developed. The model relies on the assumption of a relatively small contact surface in order to decouple equilibrium equations in the frequency domain. It is applied in combination with an adapted rolling contact solving strategy to the rolling resistance of a coated sphere.</p><p>New modeling approaches yielding rolling resistance estimates for rigid spheres (and cylinders) on viscoelastic layers of finite thicknesses are also introduced, as lower-cost alternatives to more comprehensive solution-finding strategies, including those proposed in this work. Application examples illustrate the capabilities of the different approaches over their respective ranges of validity.</p><p>The computational tools proposed in this dissertation are verified by comparison to dynamic finite element simulations and to existing solutions in limiting cases. The dependencies of rolling resistance on problem parameters are explored. It is for instance shown that, on orthotropic layers, the dissipated power varies with the direction of motion, which suggests new ways of optimizing the level of damping in various engineering applications of very high impact. Interesting lateral viscoelastic effects resulting from material asymmetry are unveiled. These phenomena could be harnessed to achieve smooth and `invisible' guides across three-dimensional viscoelastic surfaces, and hence suggest new ways of controlling trajectories, with a broad range of potential applications.</p><p>A new experimental apparatus is designed and assembled to measure viscoelastic rolling resistance. Experiments are conducted by rolling steel balls between sheets of rubber. Principal sources of measurement error, specific to the device, are discussed. Rolling resistance predictions are obtained using the computational tools presented in this dissertation, and compared to the measurements. Interesting conclusions are drawn regarding the fundamental influence of the Payne effect on viscoelastic rolling friction.</p><p>The work presented in this dissertations finally touches on the mechanical behavior of casing-infill composite tubes, as potential new lightweight structural elements. The axial behavior of composite circular tubes is addressed analytically. The influence of material parameters and geometry on structural performances are revealed and presented in original graphical forms. It is for instance shown that significantly improved overall stiffness and capacity at yield can be obtained using a moderately soft and highly auxetic infill, which further highlights the need to develop new lightweight auxetic materials, without compromising their stiffness. It is furthermore concluded that limited mechanical synergies can be expected in metal-polymer composite tubes, within the linear range of the materials involved. This prediction is confirmed by a bending experiment conducted on an Aluminum-Urethane composite tube. The experiment however reveals unexpected and quite promising mechanical synergies under large deformations. This novel composite has a potential influence on the design and performance of lightweight protecting structures against shocks and accelerations due to impacts, which justifies that it be characterized further.</p> / Dissertation
|
69 |
Boundary Element Method Formulation And Its Solution In Forward Problem Of Electrocardiography By Using A Realistic Torso ModelKurt, Arda 01 April 2006 (has links) (PDF)
The electrical currents generated in the heart propagate to the outward direction
of the body by means of conductive tissues and these currents yield a potential
distribution on the body surface. This potential distribution is recorded
and analyzed by a tool called electrocardiogram. It is not a problem, if this process
continues normally / however, when it is distorted by some abnormalities,
the results will be fatal. Electrocardiography (ECG) is the technique dealing
with the acquisition and interpretation of the electrical potentials recorded at
the body surface due to the electrical activity of the heart. This can be realized
by using one of the two approaches utilized in ECG namely / forward and inverse
problems. The former one entails the calculation potentials on the body surface
from known electrical activity of the heart and the latter one does the reverse.
In this thesis, we will construct the body surface potentials in a realistic torso
model starting from the epicardial potentials. In order to solve the forward problem,
one needs a geometric model that includes the torso and the heart
surfaces, as well as the intermediate surfaces or the intervening volume, and
some assumptions about the electrical conductivity inside the enclosed volume.
A realistic torso model has a complex geometry and this complexity makes it
impossible to solve the forward problem analytically. In this study, Boundary
Element Method (BEM) will be applied to solve the forward problem numerically.
Furthermore, the effect of torso inhomogeneities such as lungs, muscles
and skin to the body surface potentials will be analyzed numerically.
|
70 |
On an Efficient Method fo Time-Domain Computational AeroelasticityEller, David January 2005 (has links)
The present thesis summarizes work on developing a method for unsteady aerodynamic analysis primarily for aeroelastic simulations. In contrast to widely used prediction tools based on frequency-domain representations, the current approach aims to provide a time-domain simulation capability which can be readily integrated with possibly nonlinear structural and control system models. Further, due to the potential flow model underlying the computational method, and the solution algorithm based on an efficient boundary element formulation, the computational effort for the solution is moderate, allowing time-dependent simulations of complex configurations. The computational method is applied to simulate a number of wind-tunnel experiments involving highly flexible models. Two of the experiments are utilized to verify the method and to ascertain the validity of the unsteady flow model. In the third study, simulations are used for the numerical optimization of a configuration with multiple control surfaces. Here, the flexibility of the model is exploited in order to achieve a reduction of induced drag. Comparison with experimental results shows that the numerical method attains adequate accuracy within the inherent limits of the potential flow model. Finally, rather extensive aeroelastic simulations are performed for the ASK 21 sailplane. Time-domain simulations of a pull-up maneuver and comparisons with flight test data demonstrate that, considering modeling and computational effort, excellent agreement is obtained. Furthermore, a flutter analysis is performed for the same aircraft using identified frequency-domain loads. Results are found to deviate only slightly from critical speed and frequency obtained using an industry-standard aeroelastic analysis code. Nevertheless, erratic results for control surface hinge moments indicate that the accuracy of the present method would benefit from improved control surface modeling and coupled boundary layer analysis. / QC 20100531
|
Page generated in 0.096 seconds