• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • 1
  • Tagged with
  • 10
  • 10
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Discontinuous Galerkin methods for resolving non linear and dispersive near shore waves

Panda, Nishant 23 October 2014 (has links)
Near shore hydrodynamics has been an important research area dealing with coastal processes. The nearshore coastal region is the region between the shoreline and a fictive offshore limit which usually is defined as the limit where the depth becomes so large that it no longer influences the waves. This spatially limited but highly energetic zone is where water waves shoal, break and transmit energy to the shoreline and are governed by highly dispersive and non-linear effects. An accurate understanding of this phenomena is extremely useful, especially in emergency situations during hurricanes and storms. While the shallow water assumption is valid in regions where the characteristic wavelength exceeds a typical depth by orders of magnitude, Boussinesq-type equations have been used to model near-shore wave motion. Unfortunately these equations are complex system of coupled non-linear and dispersive differential equations that have made the developement of numerical approximations extremely challenging. In this dissertation, a local discontinuous Galerkin method for Boussinesq-Green Naghdi Equations is presented and validated against experimental results. Currently Green-Naghdi equations have many variants. We develop a numerical method in one horizontal dimension for the Green-Naghdi equations based on rotational characteristics in the velocity field. Stability criterion is also established for the linearized Green-Naghdi equations and a careful proof of linear stability of the numerical method is carried out. Verification is done against a linearized standing wave problem in flat bathymetry and h,p (denoted by K in this thesis) error rates are plotted. The numerical method is validated with experimental data from dispersive and non-linear test cases. / text
2

Turbulent Flow and Transport Modeling by Long Waves and Currents

Kim, Dae Hong 2009 August 1900 (has links)
This dissertation presents models for turbulent flow and transport by currents and long waves in large domain. From the Navier-Stokes equations, a fully nonlinear depth-integrated equation model for weakly dispersive, turbulent and rotational flow is derived by a perturbation approach based on long wave scaling. The same perturbation approach is applied for the derivation of a depth-integrated transport equation. As the results, coherent structures generated by the turbulence induced by the bottom friction and topography can be predicted very reasonably. The three dimensional turbulence effects are incorporated into the flow model by employing a back scatter model. The back scatter model makes it possible to predict turbulent transport: It contributes to the energy transport and the lateral turbulent diffusion through relying on the turbulent intensity, not by relying on an empirical diffusion constant. The inherent limitation of the depth-integrated transport equation, that is, the limitation for the near field prediction is recognized in the derivation and the numerical simulation. To solve the derived equation set, a highly accurate and stable finite volume scheme numerical solver is developed. Thus, the numerical solver can predict dispersive and nonlinear wave propagation with minimal error. Also, good stability is achieved enough to be applied to the dam-break flows and undular tidal bores. In addition, a robust moving boundary scheme based on simple physical conditions is presented, which can extend the applicability area of the depth-integrated models. By the comparison study with experimental data, it is expected that the numerical model can provide high confidence results for the wave and current transformations including shocks and undular bores on complex bathymetry and topography. For the accurate near field transport prediction, a three dimensional transport model in ?-coordinate coupled with the depth-integrated flow model is developed. Like the other models, this model is also intended for large domain problems, and yet efficient and accurate in the far field and near field together.
3

Incompressible Boussinesq equations and spaces of borderline Besov type

Glenn-Levin, Jacob Benjamin 12 July 2012 (has links)
The Boussinesq approximation is a set of fluids equations utilized in the atmospheric and oceanographic sciences. They may be thought of as inhomogeneous, incompressible Euler or Navier-Stokes equations, where the inhomogeneous term is a scalar quantity, typically representing density or temperature, governed by a convection-diffusion equation. In this thesis, we prove local-in-time existence and uniqueness of an inviscid Boussinesq system. Furthermore, we show that under stronger assumptions, the local-in-time results can be extended to global-in-time existence and uniqueness as well. We assume the density equation contains nonzero diffusion and that our initial vorticity and density belong to a space of borderline Besov-type. We use paradifferential calculus and properties of the Besov-type spaces to control the growth of vorticity via an a priori estimate on the growth of density. This result is motivated by work of M. Vishik demonstrating local-in-time existence and uniqueness for 2D Euler equations in borderline Besov-type spaces, and by work of R. Danchin and M. Paicu showing the global well-posedness of the 2D Boussinesq system with initial data in critical Besov and Lp-spaces. / text
4

Data Assimilation in the Boussinesq Approximation for Mantle Convection

McQuarrie, Shane Alexander 01 July 2018 (has links)
Many highly developed physical models poorly approximate actual physical systems due to natural random noise. For example, convection in the earth's mantle—a fundamental process for understanding the geochemical makeup of the earth's crust and the geologic history of the earth—exhibits chaotic behavior, so it is difficult to model accurately. In addition, it is impossible to directly measure temperature and fluid viscosity in the mantle, and any indirect measurements are not guaranteed to be highly accurate. Over the last 50 years, mathematicians have developed a rigorous framework for reconciling noisy observations with reasonable physical models, a technique called data assimilation. We apply data assimilation to the problem of mantle convection with the infinite-Prandtl Boussinesq approximation to the Navier-Stokes equations as the model, providing rigorous conditions that guarantee synchronization between the observational system and the model. We validate these rigorous results through numerical simulations powered by a flexible new Python package, Dedalus. This methodology, including the simulation and post-processing code, may be generalized to many other systems. The numerical simulations show that the rigorous synchronization conditions are not sharp; that is, synchronization may occur even when the conditions are not met. These simulations also cast some light on the true relationships between the system parameters that are required in order to achieve synchronization. To conclude, we conduct experiments for two closely related data assimilation problems to further demonstrate the limitations of the rigorous results and to test the flexibility of data assimilation for mantle-like systems.
5

Modelling nearshore waves, runup and overtopping

Mccabe, Maurice Vincent January 2011 (has links)
Coastal flooding from wave overtopping causes considerable damage. Presently, to model wave overtopping one can either make use of physical model tests or empirical tools such as those described in the EurOtop manual. Both these methods have limitations; therefore, a quick and reliable numerical model for wave overtopping would be a very useful tool for a coastal engineer.This research aims to test and develop a numerical model (in one horizontal dimension) for nearshore waves, runup and overtopping. The Shallow Water And Boussinesq (SWAB) model solves the Boussinesq-type equations of Madsen and Sorensen (1992) for non breaking waves and the nonlinear shallow water equations for breaking waves. Through testing against a range of physical model data using regular and random waves, the SWAB model's transfer from non-breaking to breaking waves was optimised. It was found that a wave height to water depth ratio worked consistently well as a breaking criterion.A set of physical model tests were carried out, based on previous field testing of wave overtopping that had previously taken place at Anchorsholme, Blackpool. The SWAB model was used to simulate some of these physical model tests, giving good results for mean overtopping rates. SWAB models the force imposed by steep walls and recurve walls on the incident flow; this force was found to have a significant effect on overtopping rates. A comparison was made between mean overtopping rates from the SWAB model, the physical model tests, empirically-based software (PC-Overtopping) and the field data. The physical model and SWAB results compared well with the field data, though the empirical software gave large overestimates.The SWAB model was applied to the analysis of overtopping at Walcott, Norfolk. It was found that beach levels affected overtopping rates, but not as much as different randomly phased wave trains. A simulation of a recent storm event was performed, with overtopping rates being slightly lower than those reported by local residents. A joint probability analysis showed that the predicted frequency of such an event was in line with these reports.An alternative modelling technique was also tested, where a spectral energy model was coupled with a nonlinear shallow water solver. Results for wave runup parameters were very accurate, when the coupling location is at the seaward edge of the surf zone. Extension of this modelling technique into two horizontal dimensions would be more straightforward than with the SWAB model.
6

Approximation and Control of the Boussinesq Equations with Application to Control of Energy Efficient Building Systems

Hu, Weiwei 16 July 2012 (has links)
In this thesis we present theoretical and numerical results for a feedback control problem defined by a thermal fluid. The problem is motivated by recent interest in designing and controlling energy efficient building systems. In particular, we show that it is possible to locally exponentially stabilize the nonlinear Boussinesq Equations by applying Neumann/Robin type boundary control on a bounded and connected domain. The feedback controller is obtained by solving a Linear Quadratic Regulator problem for the linearized Boussinesq equations. Applying classical results for semilinear equations where the linear term generates an analytic semigroup, we establish that this Riccati-based optimal boundary feedback control provides a local stabilizing controller for the full nonlinear Boussinesq equations. In addition, we present a finite element Galerkin approximation. Finally, we provide numerical results based on standard Taylor-Hood elements to illustrate the theory. / Ph. D.
7

A unified spectral/hp element depth-integrated Boussinesq model for nonlinear wave-floating body interaction / Un modèle Boussinesq intégré en profondeur unifié d’élément spectral/hp pour une interaction nonlinéaire vague-corps flottante

Bosi, Umberto 17 June 2019 (has links)
Le secteur de l’énergie houlomotrice s’appuie fortement sur la modélisation mathématique et la simulation d’expériences physiques mettant en jeu les interactions entre les ondes et les corps. Dans ce travail, nous avons développé un modèle d’interaction de fidélité moyenne vague-corps pour la simulation de structures tronquées flottantes fonctionnant en mouvement vertical. Ce travail concerne l’ingénierie de l’énergie marine, pour des applications telles que les convertisseurs d’énergie de vague (WEC) à absorption ponctuelle, même si ses applications peuvent aussi être utilisées en ingénierie maritime et navale. Les motivations de ce travail reposent sur les méthodes standard actuelles pour décrire l’interaction corps-vague. Cellesci sont basées sur des modèles résolvant le flux de potentiel linéaire (LPF), du fait de leur grande efficacité. Cependant, les modèles LPF sont basés sur l’hypothèse de faible amplitude et ne peuvent pas répresenter les effets hydrodynamiques non linéaires, importants pour le WEC opérant dans la région de résonance ou dans les régions proches du rivage. En effet, il a été démontré que les modèles LFP prédisent de manière excessive la production de puissance, sauf si des coefficients de traînée sont calibrés. Plus récemment, des simulations Reynolds Averaged Navier-Stokes (RANS) ont été utilisées pour les WEC. RANS est un modèle complet et précis, mais très coûteux en calcul. Il n’est ni adapté à l’optimisation d’appareils uniques ni aux parcs énergétiques. Nous avons donc proposé un modèle de fidélité moyenne basé sur des équations de type Boussinesq, afin d’améliorer le compromis entre précision et efficacité. Les équations de type Boussinesq sont des modèles d’ondes intégrées en profondeur et ont été un outil d’ingénierie standard pour la simulation numérique de la propagation d’ondes non linéaires dans les eaux peu profondes et les zones côtières. Grâce à l’élimination de la dimension verticale, le modèle résultant est très efficace et évite la description temporelle de la limite entre la surface libre et l’air. Jiang (2001) a proposé un modèle de Boussinesq unifié, décomposant le problème en deux domaines : surface libre et corps. Dans cette méthode, le domaine du corps est également modélisé par une approche intégrée en profondeur - d’où le terme unifié. Récemment, Lannes (2016) avait analysé de manière rigoureuse une configuration similaire dans une équation non linéaire en eaux peu profondes, en déduisant une solution exacte et semi-analitique pour des corps en mouvement. Suivant la même approche, Godlewski et al. (2018) a élaboré un modèle de flux d’eau peu profonde encombrée. [...] Dans cette thèse, nous développons les résultats présentés par Eskilsson et al. (2016) et Bosi et al. (2019). Le modèle est étendu à deux dimensions horizontales. Le modèle 1D est vérifié à l’aide de solutions fabriquées et validé par rapport aux résultats publiés sur l’interaction vague-corps en 1D pour les pontons fixes et corps en mouvement de soulèvement forcé et libre. Les résultats des preuves de concept de la simulation de plusieurs corps sont présentés. Nous validons et vérifions le modèle 2D en suivant des étapes similaires. Enfin, nous mettons en oeuvre la technique de verrouillage, une méthode de contrôle de mouvement du corps pour améliorer la réponse au mouvement des vagues. Il est démontré que le modèle possède une excellente précision, qu’il est pertinent pour les applications d’ondes en interaction avec des dispositifs à énergie houlomotrice et qu’il peut être étendu pour simuler des cas plus complexes. / The wave energy sector relies heavily on mathematical modelling and simulation of the interactions between waves and floating bodies. In this work, we have developed a medium-fidelity wave-body interaction model for the simulation of truncated surface piercing structures operating in heave motion, such as point absorbers wave energy converters (WECs). The motivation of the work lies in the present approach to wave-body interaction. The standard approach is to use models based on linear potential flow (LPF). LPF models are based on the small amplitude/ small motion assumption and, while highly computational efficient, cannot account for nonlinear hydrodynamic effects (except for Morison-type drag). Nonlinear effects are particularly important for WEC operating in resonance, or in nearshore regions where wave transformations are expected. More recently, Reynolds Averaged Navier-Stokes (RANS) simulations have been employed for modelling WECs. RANS is a complete and accurate model but computationally very costly. At present RANS models are therefore unsuited for the optimization of single devices, not to mention energy farms. Thus, we propose a numerical model based built on Boussinesq-type equations to include wave-wave interaction as well as finite body motion in a computationally efficient formulation. Boussinesq-type equations are depth-integrated wave models and are standard engineering tool for numerical simulation of propagation of nonlinear wave in shallow water and coastal areas. Thanks to the elimination of the vertical dimension and the avoidance of a time-dependent computational the resulting model is very computational efficient. Jiang (Jiang, 2001) proposed a unified Boussinesq model, decomposing the problem into free surface and body domains. Notably, in Jiang’s methodology also the body domain is modeled by a depth-integrated approach –hence the term unified. As all models based on Boussinesq-type equations, the model is limited to shallow and intermediate depth regimes. We consider the Madsen and Sørensen model, an enhanced Boussinesq model, for the propagation of waves. We employ a spectral/hp finite element method (SEM) to discretize the governing equations. The continuous SEM is used inside each domain and flux-based coupling conditions are derived from the discontinuous Galerkin method. The use of SEM give support for the use of adaptive meshes for geometric flexibility and high-order accurate approximations makes the scheme computationally efficient. In this thesis, we present 1D results for the propagation and interaction of waves with floating structures. The 1D model is verified using manufactured solutions. The model is then validated against published results for wave-body interaction. The hydrostatic cases (forced motion and decay test) are compared to analytical and semi-analytical solutions (Lannes, 2017), while the non-hydrostatic tests (fixed pontoon and freely heaving bodies) are compared to RANS reference solutions. The model is easily extended to handle multiple bodies and a proof-of-concept result is presented. Finally, we implement the latching technique, a method to control the movement of the body such that the response to the wave movement is improved. The model is extended to two horizontal dimensions and verified and validated against manufactured solutions and RANS simulations. The model is found to have a good accuracy both in one and two dimensions and is relevant for applications of waves interacting with wave energy devices. The model can be extended to simulate more complex cases such as WEC farms/arrays or include power generation systems to the device.
8

Nouvelle approche pour l'obtention de modèles asymptotiques en océanographie / New method to obtain asymptotic models in oceanography

Bellec, Stevan 05 October 2016 (has links)
Dans ce manuscrit, nous nous inéressons à l'étude du mouvement des vagues soumises uniquement à leur poids par le biais d'équations asymptotiques. Nous commençons par rappeler la dérivation des principaux modèles généralement utilisés (Boussinesq, Green-Naghdi,...). Nous introduisons également un nouveau modèle exprimé en amplitude-flux qui correspond à une variante des équations de Nwogu. Dans le second chapitre, nous démontrons un résultat d'existence en temps long pour ces nouvelles équations et nous étudions l'existence d'ondes solitaires pour les équations de Boussinesq. Ce travail permet notamment de calculer avec une grande précision ces solutions exactes. Le troisième chapitre détaille les différences non linéaires que l'on retrouve entre les différentes équations de Boussinesq (modèles en flux-amplitude comparés aux modèles en vitesse-amplitude). Enfin, les deux derniers chapitres introduisent un nouveau paradigme pour trouver des schémas numériques adaptés aux modèles asymptotiques. L'idée est d'appliquer une analyse asymptotique aux équations d'Euler discrétisées. Ce nouveau paradigme est appliqué aux équations de Peregrine, de Nwogu et de Green-Naghdi. Plusieurs cas tests sont proposés dans ces deux chapitres. / In this work, we are interested in the evolution of water waves under the gravity force using asymptotics models. We start by recalling the derivation of most used models (Boussinesq, Green-Naghdi,...) and we introduce a new model expressed amplitude-flux, which is an alternative version of the Nwogu equations. In the second chapter, we prove a long time existence result for the new model and we investigate the existence of solitary waves for the Boussinesq models. This work allow us to compute these solutions with a good precision. The third chapter highlights the nonlinear differences between the Boussinesq equations (amplitude-flux models versus amplitude-velocity models). Finally, the two last chapter introduce a new paradigm in order to find numerical schemes adapted to asymptotics models. The idea is to apply an asymptotic analysis to a discretized Euler system. This new paradigm is applied to Peregrine equations, Nwogu equations and Green-Naghdi equations. Test cases are presented in these two chapters
9

Coupled Boussinesq equations and nonlinear waves in layered waveguides

Moore, Kieron R. January 2013 (has links)
There exists substantial applications motivating the study of nonlinear longitudinal wave propagation in layered (or laminated) elastic waveguides, in particular within areas related to non-destructive testing, where there is a demand to understand, reinforce, and improve deformation properties of such structures. It has been shown [76] that long longitudinal waves in such structures can be accurately modelled by coupled regularised Boussinesq (cRB) equations, provided the bonding between layers is sufficiently soft. The work in this thesis firstly examines the initial-value problem (IVP) for the system of cRB equations in [76] on the infinite line, for localised or sufficiently rapidly decaying initial conditions. Using asymptotic multiple-scales expansions, a nonsecular weakly nonlinear solution of the IVP is constructed, up to the accuracy of the problem formulation. The asymptotic theory is supported with numerical simulations of the cRB equations. The weakly nonlinear solution for the equivalent IVP for a single regularised Boussinesq equation is then constructed; constituting an extension of the classical d'Alembert's formula for the leading order wave equation. The initial conditions are also extended to allow one to separately specify an O(1) and O(ε) part. Large classes of solutions are derived and several particular examples are explicitly analysed with numerical simulations. The weakly nonlinear solution is then improved by considering the IVP for a single regularised Boussinesq-type equation, in order to further develop the higher order terms in the solution. More specifically, it enables one to now correctly specify the higher order term's time dependence. Numerical simulations of the IVP are compared with several examples to justify the improvement of the solution. Finally an asymptotic procedure is developed to describe the class of radiating solitary wave solutions which exist as solutions to cRB equations under particular regimes of the parameters. The validity of the analytical solution is examined with numerical simulations of the cRB equations. Numerical simulations throughout this work are derived and implemented via developments of several finite difference schemes and pseudo-spectral methods, explained in detail in the appendices.
10

Étude qualitative des solutions du système de Navier-Stokes incompressible à densité variable / Qualitative study of solutions of the system of Navier-Stokes equations with variable density

Zhang, Xin 29 September 2017 (has links)
Dans cette thèse, on s'intéresse à deux problèmes provenant de l'étude mathématique des fluides incompressibles visqueux : la propagation de la régularité tangentielle et le mouvement d'une surface libre.La première question concerne plus particulièrement l'étude qualitative de l'évolution de quantités thermodynamiques telles que la température dans l'équation de Boussinesq sans diffusion et la densité dans le système de Navier-Stokes non homogène. Typiquement, on suppose que ces deux quantités sont, à l'instant initial, discontinues le long d'une interface à régularité h"oldérienne. Comme conséquence de résultats de propagation de régularité tangentielle pour le champ de vitesses, on établit que la régularité des interfaces persiste pour tout temps aussi bien en dimension deux d'espace, qu'en dimension supérieure (avec condition de petitesse). Notre approche suit celle du travail de J.-Y. Chemin dans les années 90 pour le problème des poches de tourbillon dans les fluides incompressiblesparfaits.Dans le cas présent, outre cette hypothèse de régularité tangentielle, nous n'avons besoin que d'une régularité critique sur le champ de vitesses.La démonstration repose sur le calcul para-différentiel et les espaces de multiplicateurs.Dans la dernière partie de la thèse, on considère le problème à frontière libre pour le système de Navier-Stokes incompressible à deux phases. Ce système permet de décrire l'évolution d'un mélange de deux fluides non miscibles tels que l'huile et l'eau par exemple. Différents cas de figure sont étudiés : le cas d'un réservoir borné, d'une goutte ou d'une rivière à profondeur finie.On établit l'existence et l'unicité à temps petit pour ce problème. Notre démonstration repose fortement sur des propriétés de régularité maximale parabolique de type $L_p$-$L_q / This thesis is dedicated to two different problems in the mathematical study of the viscous incompressible fluids: the persistence of tangential regularity and the motion of a free surface.The first problem concerns the study of the qualitative properties of some thermodynamical quantities in incompressible fluid models, such as the temperature for Boussinesq system with no diffusion and the density for the non-homogeneous Navier-Stokes system. Typically, we assume those two quantities to be initially piecewise constant along an interface with H"older regularity.As a consequence of stability of certain directional smoothness of the velocity field, we establish that the regularity of the interfaces persist globally with respect to time both in the two dimensional and higher dimensional cases (under some smallness condition). Our strategy is borrowed from the pioneering works by J.-Y.Chemin in 1990s on the vortex patch problem for ideal fluids.Let us emphasize that, apart from the directional regularity, we only impose rough (critical) regularity on the velocity field. The proof requires tools from para-differential calculus and multiplier space theory.In the last part of this thesis, we are concerned with the free boundary value problem for two-phase density-dependent Navier-Stokes system.This model is used to describe the motion of two immiscible liquids, like the oil and the water. Such mixture may occur in different situations, such as in a fixed bounded container, in a moving bounded droplet or in a river with finite depth. We establish the short time well-posedness for this problem. Our result strongly relies on the $L_p$-$L_q$ maximal regularity theoryfor parabolic equations

Page generated in 0.0816 seconds