Spelling suggestions: "subject:"bovine serum albumin"" "subject:"bovine serum lbumin""
11 |
Steroid Sensitive Neurons and Male Rat Mating BehaviorHuddleston, Gloria Gradine 03 August 2006 (has links)
Male rat mating is a suite of individual behaviors mediated by the actions of two metabolites of testosterone (T), dihydrotestosterone (DHT) and estradiol (E2), on the brain. Individually, neither metabolite fully maintains or restores mating in castrated males, but both combined are as effective as T. Two hormone-responsive areas of the brain, the medial preoptic area (MPO) and the medial amygdala (MEA), are crucial for mating. These studies ask: by what mechanism(s) does E2 act in the MPO and MEA? We blocked the conversion of T to E2 in the MEA of intact male rats and sexual behavior was not maintained. We then infused antisense oligodeoxynucleotides (ODNs) to estrogen receptor-alpha (ER-á) mRNA bilaterally to the MPO or the MEA of intact male rats to block ER-á expression. ODN infusion of the MPO attenuated mating but infusion of the MEA had no effect. These results suggest that ER-á is the behaviorally relevant estrogen receptor (ER) in the MPO but not in the MEA. ER was originally described in the cytoplasm and nucleus of cells. Recently plasma membrane associated ERs (mER) have been reported. We conjugated E2 to Bovine Serum Albumin (BSA-E2), a large protein that will not penetrate the plasma membrane, thus restricting the action of E2 to mER, and chronically delivered it to the MPO and MEA. BSA-E2 maintained mating if put in the MPO, but not in the MEA, suggesting a surface action of E2 is sufficient in the MPO. The MPO and MEA are reciprocally connected and probably constitute elements of a larger, steroid-responsive neural network that mediates male mating behavior. To begin to describe this purported circuit, we injected Pseudorabies virus (PRV) into the prostate gland and dually labeled PRV-immunoreactive cells for ER or androgen receptors. We found dual labeling in a forebrain diencephalic circuit that includes the MPO, the medial preoptic nucleus, bed nucleus of stria terminalis, the zona incerta, the periaqueductal gray and other areas that presumably mediate both autonomic and motor aspects of male mating. Together, the results of these studies begin to elucidate locations and mechanisms of E2 mediation of male sexual behavior.
|
12 |
Chiral Separations By Enzyme Enhanced Ultrafiltration: Fractionation Of Racemic BenzoinOlceroglu, Ayse Hande 01 August 2006 (has links) (PDF)
In this study, a methodology for separation of chiral molecules, by using enhanced ultrafiltration system was developed. Benzoin was the model chiral molecule studied.
In the scope of developing this methodology, some parameters were investigated in the preliminary ultrafiltration experiments in order to set the operation conditions for enhanced ultrafiltration experiments. Due to the slight solubility of benzoin in pure water, 15% (v/v) Polyethylene glycol (PEG 400) and 30 % (v/v) Dimethyl sulfoxide (DMSO) were selected as cosolvents. Because of the high retention capacity of RC-10000 Da membranes for benzoin, a membrane saturation strategy was developed.
In polymer enhanced ultrafiltration (PEUF) experiments bovine serum albumin (BSA) was used as ligand. Effects of ligand concentration and pH on total benzoin retention and on enantiomeric excess (ee %) were investigated. Benzoin concentration was almost kept constant at ~10 ppm and ~50 ppm for 15% (v/v) PEG 400 and 30 % (v/v) DMSO cosolvents, respectively. It was observed that the increase either in pH or in BSA concentration yielded an increase in total benzoin retention. In 15% (v/v) PEG 400-water, with BSA concentration of 10000 ppm, at pH 10, total benzoin retention reached to 48.7%. For this cosolvent, at different pH values and at different BSA concentrations, all ee % values were about or less than 10%. When 50000 ppm BSA was dissolved in 30 % (v/v) DMSO-water, total benzoin retention increased to 41.3% at pH 10 and ee % reached 16.7 % at pH 11.
In enzyme enhanced ultrafiltration (EEUF) experiments, specific to benzoin, apo form of Benzaldehyde Lyase (BAL, E.C. 4.1.2.38) was used as ligand. These experiments were performed with constant ~ 10 ppm benzoin concentration in only 15% (v/v) PEG 400 &ndash / water solvent. Effect of BAL concentration on total benzoin retention and ee% was investigated. It was found that / for all the studied BAL concentrations in the range of 650- 1936 ppm total benzoin retention and ee % were kept almost constant at ~75% and ~60%, respectively.
|
13 |
Recombinant expression of cytochrome P450-2D6 and its application in tamoxifen metabolismEdwin, Munyai Vukosi January 2018 (has links)
Magister Scientiae - MSc (Biotechnology) / Breast cancer is regarded as the most common form of cancer in women and it comprises of
approximately 23 % of female cancers, while affecting women at any age range. For
oestrogen receptor positive patients, tamoxifen is used as a prescribed medication for breast
cancer therapy. However, tamoxifen in its natural form is not active to achieve the required
treatment and prevention of breast cells proliferation. Since tamoxifen is a prodrug, it need to
be converted into its active form, endoxifen, for which it is achieved by the action of the
cytochrome P450 enzymes. Cytochrome P450 2D6 (CYP2D6) is a member of cytochrome
P450 enzymes for which are superfamily of heme enzymes characterised by their ability to
catalyse the oxidative reactions of compounds, including the pathway of tamoxifen
metabolism. However, due to polymorphism that lead to inactive phenotypes of CYP2D6 in
this gene, there is a challenge of diagnosing if a patient can metabolise tamoxifen or not. The
current diagnostic tool, Amplichip CYP450, for CYP2D6 is based on genotypes, and it lead
to uncertainness as to whether the presence of functionalCYP2D6 alleles of CYP2D6 may
lead to coding of active protein, thus leading to wrong treatment measures and overdose of
tamoxifen. Electrochemical techniques have provided reliable, simple, quick, and sensitive
methods for the determination of drug metabolism by enzymes. Therefore, it is important to
develop a CYP2D6 phenotype-based sensor to detect and tell whether a particular individual
can metabolise the drug or not.
|
14 |
Caracterização do aço inoxidável austenítico UNS S31254 em meio de NaCI 0,11 mol L-1 visando seu emprego em implantes ortopédicos / Electrochemical characterization of UNS S31254 austenitic stainless steel in 0.11 mol L-1 NaCl medium in order to propose its application in orthopaedic implantsMonica Luisa Chaves de Andrade Afonso 27 September 2006 (has links)
Foi feita a caracterização eletroquímica do aço inoxidável austenítico UNS S31254 em meio de NaCl 0,11 mol L-1 na ausência e presença de soro albumina bovina (BSA) visando seu emprego em implantes ortopédicos. Foram empregadas como técnicas: medidas de potencial de circuito aberto, curvas de polarização, cronoamperometria, EIE, XPS, MEV, EDS e EEO. O comportamento eletroquímico do aço 254 foi comparado com o de outros aços empregados em implantes ortopédicos (ISO 5832-9, ASTM F138, e AISI 316L) na ausência e presença de BSA. O aço 254 se mostrou semelhante ao ISO 5832-9: encontra-se passivado desde o potencial de corrosão até o de transpassivação; a presença de inclusões de óxidos de cálcio e alumínio no aço 254 foi considerada a responsável por um potencial de transpassivação 100 mV menos positivo do que o observado com o aço ISO 5832-9. Foi detectada. além de óxido de Cr(III), a presença de Mo na forma Mo(VI) no filme passivo do aço 254. A ação da BSA, ora passivante ora catalisadora, depende de sua concentração, da natureza do substrato metálico, e do potencial na interfase metal-solução. A BSA modifica o mecanismo de oxidação do aço 254 e inibe seletivamente a dissolução dos seus elementos constituintes, em particular, níquel e cromo. / The electrochemical characterization of UNS S31254 has been made in 0.11 mol L-1 NaCl medium in the absence and presence of bovine serum albumin (BSA) in order to propose its application in orthopaedic implants. The techniques employed were: open circuit potential measurements, polarization curves, chronoamperometry, EIS, XPS, SEM, EDS and EEO. The electrochemical behavior of 254 SS was compared to that observed for ISO 5832-9, ASTM F138 and AISI 316L stainless steels, used in orthopedic implants, in the absence and presence of BSA. 254 SS is similar to ISO 5832-9 SS: it is passivated on the potential range between the corrosion and the transpassivation potentials; the presence of calcium and aluminum oxides can be responsible for the shift of about 100 mV to less positive potentials on the transpassivation potential when compared to ISO 5832-9 SS. The presence of Mo(VI) was detected beside Cr(III) as passivating film for 254 SS. BSA action depends on its concentration, the nature of the metallic substract and on the potential in the metal-solution interphase. BSA changes the oxidation mechanism of 254 SS and promotes the selective dissolution of the elements particularly nickel and chromium.
|
15 |
Interação da proteína albumina do soro bovino (BSA) com substratos sintéticos / Interaction of the protein bovine serum albumin (BSA) with synthetic substrates.Ernando Silva Ferreira 19 February 2010 (has links)
A interface formada por materiais biológicos e materiais sintéticos tem grande importância em aplicações biomédicas, tais como o desenvolvimento de biomateriais para implantes médicos, que tem como processo essencial a deposição de proteínas na superfície dos biomateriais, e ainda não é bem compreendido no nível molecular. Algumas proteínas sofrem mudanças conformacionais após a adsorção na interface sólido-líquido, afetando suas funções ou propriedades, e algumas técnicas podem medir mudanças conformacionais em interfaces sólido. É possível estudar a fluorescência intrínseca de proteínas: a posição do máximo na faixa espectral da fluorescência, a eficiência quântica e o tempo de vida de fluorescência são indicadores de mudanças no ambiente local de grupos de moléculas de proteína fluorescente. Por outro lado, Nanopartículas de ouro têm atraído muita atenção pela sua afinidade com materiais biológicos e suas propriedades ópticas. Nesta tese, estudamos a viabilidade de substratos de vidro, quartzo, mica e ITO (óxido de índio e estanho) modificado com quitosana, phtalocyanines (Ni, Fe e Ni) e poli(alilanina hidroclorada) (PAH) na adsorção de BSA em forma dos filmes produzidos pela técnica camada por camada. O sistema foi estudado por UV-Vis e espectroscopia de fluorescência estática e resolvida no tempo. A caracterização morfológica dos filmes foi realizada por microscopia de força atômica e microscopia óptica. Os resultados mostram que os filmes de BSA / HAP cresceram com eficiência quatro vezes maior do que os filmes feitos de quitosana, que o quartzo tem a melhor janela de trabalho de UV-vis e há uma relação entre o pH da BSA e o tempo vida de fluorescência do filme resultante. As nanopartículas de ouro foram produzidas pela redução química e estabilizada por quatro diferentes métodos. O crescimento das nanopartículas foi monitorado por UV-vis spectroscopy. A carga de superfície das nanopartículas e da BSA foi estimado em vários valores de pH por medidas de potencial zeta. Os resultados indicaram que as nanopartículas têm cargas negativas na faixa de pH estudada. Soluções de BSA foram preparadas em diferentes valores de pH, e levadas para interagir com as nanopartículas de ouro. Os dados de supressão de fluorescência da BSA mostraram uma maior afinidade da BSA com nanopartículas estabilizadas com sacarose, com pH próximo do ponto isoelétrico (IP) estimado para BSA. / The interface formed by biological materials and synthetic materials has great importance in biomedical applications such as the development of biomaterials for medical implants, which has as an essential process of protein adsorption on the surface of biomaterials, and is not yet well understood in the molecular level. Some proteins undergo conformational changes after adsorption at solid-liquid interfaces, affecting their functions or properties, and few techniques can measure conformational changes in solid interfaces. It is possible to study the intrinsic fluorescence of proteins: the position of the maximum in the spectral range of fluorescence, the quantum efficiency and lifetime of fluorescence are indicators of change in the local environment of fluorescent groups of protein molecules. On the other hand, gold nanopartículas have attracted much attention for its affinity with biological materials and their optical properties. In this thesis we study the feasibility of glass substrates, quartz, mica and ITO (Indium tin oxide) modified with chitosan, phtalocyanines (Ni, Fe and Ni) and poly (allylamine hydrochloride) (PAH) on the adsorption of BSA in the form of films produced by the layer by layer technique. The system was studied by UV-Vis and static and time-resolved fluorescence spectroscopy. Morphological characterization of the films was performed by atomic force microscopy and optical microscopy. The results indicate that the films of BSA/PAH grew with efficiency four times greater than the films made of chitosan, that the quartz has the best working window for UV-vis and there is a relationship between the pH of the BSA and lifetime of fluorescence of the resulting film. Gold nanoparticles were produced by chemical reduction and stabilized by four different methods. The growth of nanoparticles was monitored by UV-vis spectroscopy. The surface charge of nanoparticles and the BSA was estimated at various pH values by zeta potential measurements. The results indicated that the nanoparticles have negative charges in the pH range studied. BSA solutions were prepared at various pH values, were taken to interact with gold nanoparticles. Fluorescence quenching data of BSA showed a greater affinity of the BSA with nanoparticles stabilized with sucrose, at pH near the isoelectric point (IEP) estimated for BSA.
|
16 |
Development of novel hypervalent iodine conjugation strategies towards pneumococcal conjugate vaccinesFumbatha, Sinethemba January 2013 (has links)
Masters of Science / Invasive pneumococcal disease (IPD), which includes potentially fatal conditions such as meningitis, septicaemia and pneumonia poses a threat in children aged <5 years, pneumonia being the leading cause of child mortality worldwide. Even though capsular polysaccharides are the main antigens involved in the immunity to encapsulated bacteria, it was found that in children in that age group, the immune system was unresponsive. Conjugate vaccines however induce immunologic memory and provide long-term protective immunity. Therefore the aim of
this project was to develop novel conjugation strategies towards a pneumococcal conjugate vaccines and focuses mainly on the serotypes that are a burden to the African continent. The chemistry involved in developing a conjugate vaccine is of importance beacuse while some polysaccharides contain chemical grouping which can be conveniently utilized for conjugation, many medically important ones require derivatization before they can be coupled to protein. Derivatization of which can be achieved through various strategies, important to note is through
hypervalent iodine oxidants. Two hypervalent iodine reagents, O-Methyl substituted-1-hydroxy-1,2-benziodoxol-3(1H)-one 1-oxide (Me-IBX)and modified 1-hydroxy-1,2-benziodoxol-3(1H)-one 1-oxide (mIBX)were successfully synthesized in preparation for the use in polysaccharide, polyribitol phosphate, (PRP) oxidation. The polysaccharide to be oxidised was first size reduced by microfluidisation to
allow maximum oxidation. However, the extent to which oxidisation was achieved was not enough to conjugate the polysaccharide to the protein of preference, Bovine Serum Albumin, (BSA).
|
17 |
Heat-induced gelation of proteinsAdams, James David January 2012 (has links)
In this study the heat-induced gelation of two (readily available) proteins, which contain disulphide bonds, has been investigated over a range of protein concentrations in the presence and absence of the presence of the reductant, dithiothreitol at neutral pH. The proteins selected in this study were: β-Lactoglobulin and bovine serum albumin. These proteins have different number of disulphide bonds and possess different protein secondary structures. The influences of the reductant and protein concentration on their heat-induced gelation were explored to see whether the proteins were able to form protein hydrogels and that the mechanical properties of the resulting protein hydrogels were controllable. The tilting test tube method revealed that both proteins formed macroscopic hydrogels, at protein concentrations above the critical gelation concentration and that the critical gelation concentration was constantly lower in the presence of the reductant. Micro-DSC revealed that both proteins had completely denatured upon heating and that the denaturation temperature and enthalpy were significantly lower in the presence of the reductant. IR spectroscopy revealed that both proteins undergo major secondary structure transitions that resulted in the formation of fibers that are rich in β-sheet structure upon heating and that the protein lost some secondary structure before any heating and gained more β-sheet structure in the presence of the reductant. Both proteins had partially denatured before any heating in the presence of the reductant and that β-LG underwent aggregation that was accompanied by the loss of native β-sheet structure and the formation of intermolecular β-sheet structure, while that BSA underwent aggregation that was accompanied by the loss of native α-helix structure and the formation of intermolecular β-sheet structure. Cryo-TEM revealed that both proteins formed fibers (10 nm in diameter) that exist as single entities at low protein concentrations and become entangled into macroscopic networks, at protein concentrations above the critical gelation concentration and that more fibers and denser macroscopic networks were formed in the presence of the reductant. Oscillatory rheology revealed that both proteins formed macroscopic networks exhibit viscoelastic behaviour and that their elastic modulus had increased in the presence of the reductant and with increasing protein concentration.
|
18 |
Applications of Capillary Electrophoresis for Studying Serum Albumin Enantioselection of D,L-Tryptophan AnalogsStinson, Jelynn A. 11 September 2012 (has links)
No description available.
|
19 |
Micro-injection moulded microneedles for drug delivery.Nair, Karthik Jayan January 2014 (has links)
The emergence of microneedle (MN) technologies offers a route for a pain free, straightforward and efficient way of transdermal drug delivery, but technological barriers still exist which pose significant challenges for manufacture of MN systems with high volume outputs at low cost. The main aim of this research was to develop new ways for MN manufacture primarily using micro-injection moulding processes with high performance engineering thermoplastics.
During the moulding process these polymeric melts will be subjected to extreme stress and temperature gradients and detailed material characterisation combined with in-line monitoring is desirable to optimise the moulding parameters and will help in achieving sharp microneedles with acceptable quality. Hence high shear rheology of these selected materials was performed at wall shear rates carried out in excess of 107 s-1 over a range of temperatures to predict the flow behaviour of polymer melts at such high shear strain rates. This information was fed into injection moulding simulation software tools (Moldflow) to assist the MN production process design. The optimal design was then used to produce a full 3D solid model of the injection mould and mould insert.
Furthermore various design of experiments were conducted considering input parameters such as injection pressure, injection speed, melt temperature, filling time and mould cavity temperature. Response variables including product quality and data acquired from the cavity pressure and temperature transducers were used to optimise the manufacturing process. The moulded MNs were geometrically assessed using a range of characterisation techniques such as atomic force microscopy, confocal microscopy and scanning electron microscopy. An attempt to make hollow MNs was performed and encountered many challenges like partial cavity filling and part ejection during processing. Studies were carried out to understand the problem and identified the major problem was in tool design and improvements to the moulding tool design were recommended.
Plasma treatment and mechanical abrasion were employed to increase the surface energy of the moulded polymer surfaces with the aim of enhancing protein adsorption. Sample surface structures before and after treatment were studied using AFM and surface energies have been obtained using contact angle measurement and calculated using Owens-Wendt theory. Adsorption performance of bovine serum albumin and release kinetics for each sample set was assessed using a Franz diffusion cell. Results indicate that plasma treatment significantly increases the surface energy and roughness resulting in better adsorption and release of BSA.
To assist design-optimisation and to assess performance, a greater understanding of MN penetration behaviour is required. Contact stiffness, failure strength and creep behaviour were measured during compression tests of MN against a steel surface, and in-vitro penetration of MNs into porcine skin. The MN penetration process into porcine skin was imaged using optical coherence tomography. Finally, a finite element model of skin was established to understand the effect of tip geometry on penetration.
The output of findings from this research will provide proof of concept level development and understanding of mechanisms of MN penetration and failure, facilitating design improvements for micro-injection moulded polymeric MNs.
|
20 |
Investigation of Plasma Treatment on Micro-Injection Moulded Microneedle for Drug DeliveryNair, Karthik Jayan, Whiteside, Benjamin R., Grant, Colin A., Patel, Rajnikant, Tuinea-Bobe, Cristina-Luminita, Norris, Keith, Paradkar, Anant R 2015 October 1922 (has links)
Yes / Plasma technology has been widely used to increase the surface energy of the polymer surfaces for many industrial applications; in particular to increase in wettability. The present work was carried out to investigate how surface modification using plasma treatment modifies the surface energy of micro-injection moulded microneedles and its influence on drug delivery. Microneedles of polyether ether ketone and polycarbonate and have been manufactured using micro-injection moulding and samples from each production batch have been subsequently subjected to a range of plasma treatment. These samples were coated with bovine serum albumin to study the protein adsorption on these treated polymer surfaces. Sample surfaces structures, before and after treatment, were studied using atomic force microscope and surface energies have been obtained using contact angle measurement and calculated using the Owens-Wendt theory. Adsorption performance of bovine serum albumin and release kinetics for each sample set was assessed using a Franz diffusion cell. Results indicate that plasma treatment significantly increases the surface energy and roughness of the microneedles resulting in better adsorption and release of BSA.
|
Page generated in 0.0617 seconds