• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 2
  • Tagged with
  • 6
  • 6
  • 6
  • 6
  • 4
  • 4
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Waveguide Sources of Photon Pairs

Horn, Rolf January 2011 (has links)
This thesis describes various methods for producing photon pairs from waveguides. It covers relevant topics such as waveguide coupling and phase matching, along with the relevant measurement techniques used to infer photon pair production. A new proposal to solve the phase matching problem is described along with two conceptual methods for generating entangled photon pairs. Photon pairs are also experimentally demonstrated from a third novel structure called a Bragg Reflection Waveguide (BRW). The new proposal to solve the phase matching problem is called Directional Quasi-Phase Matching (DQPM). It is a technique that exploits the directional dependence of the non-linear susceptiblity ($\chi^{(2)}$) tensor. It is aimed at those materials that do not allow birefringent phase-matching or periodic poling. In particular, it focuses on waveguides in which the interplay between the propagation direction, electric field polarizations and the nonlinearity can change the strength and sign of the nonlinear interaction periodically to achieve quasi-phasematching. One of the new conceptual methods for generating entangled photon pairs involves a new technique that sandwiches two waveguides from two differently oriented but similar crystals together. The idea stems from the design of a Michelson interferometer which interferes the paths over which two unique photon pair processes can occur, thereby creating entanglement in any pair of photons created in the interferometer. By forcing or sandwiching the two waveguides together, the physical space that exists in the standard Micheleson type interferometer is made non-existent, and the interferometer is effectively squashed. The result is that the two unique photon pair processes actually occupy the same physical path. This benefits the stability of the interferometer in addition to miniaturizing it. The technical challenges involved in sandwiching the two waveguides are briefly discussed. The main result of this thesis is the observation of photon pairs from the BRW. By analyzing the time correlation between two single photon detection events, spontaneous parametric down conversion (SPDC) of a picosecond pulsed ti:sapph laser is demonstrated. The process is mediated by a ridge BRW. The results show evidence for type-0, type-I and type-II phase matching of pump light at 783nm, 786nm and 789nm to down converted light that is strongly degenerate at 1566nm, 1572nm, and 1578nm respectively. The inferred efficiency of the BRW was 9.8$\cdot$10$^{-9}$ photon pairs per pump photon. This contrasts with the predicted type-0 efficiency of 2.65$\cdot$10$^{-11}$. This data is presented for the first time in such waveguides, and represents significant advances towards the integration of sources of quantum information into the existing telecommunications infrastructure.
2

Monolithic Integration of Active and Second-order Nonlinear Functionality in Bragg Reflection Waveguides

Bijlani, Bhavin J. 29 August 2011 (has links)
This thesis explored the theory, design, fabrication and characterization of AlGaAs Bragg reflection waveguides (BRW) towards the goal of a platform for monolithic integration of active and optically nonlinear devices. Through integration of a diode laser and nonlinear phase-matched cavity, the possibility of on-chip nonlinear frequency generation was explored. Such integrated devices would be highly useful as a robust, alignment free, small footprint and electrically injected alternative to bulk optic systems. A theoretical framework for modal analysis of arbitrary 1-D photonic crystal defect waveguides is developed. This method relies on the transverse resonance condition. It is then demonstrated in the context of several types of Bragg reflection waveguides. The framework is then extended to phase-match second-order nonlinearities and incorporating quantum-wells for diode lasers. Experiments within a slab and ridge waveguide demonstrated phase-matched Type-I second harmonic generation at fundamental wavelength of 1587 and 1600 nm, respectively; a first for this type of waveguide. For the slab waveguide, conversion efficiency was 0.1 %/W. In the more strongly confined ridge waveguides, efficiency increased to 8.6 %/W owing to the increased intensity. The normalized conversion efficiency was estimated to be at 600 %/Wcm^2. Diode lasers emitting at 980 nm in the BRW mode were also fabricated. Verification of the Bragg mode was performed through imaging the near- field of the mode. Propagation loss of this type of mode was measured directly for the first time at 14 cm^-1. The lasers were found to be very insensitive with characteristic temperature at 215 K. Two designs incorporating both laser and phase-matched nonlinearity within the same cavity were fabricated, for degenerate and non-degenerate down-conversion. Though the lasers were sub-optimal, a parametric fluorescence signal was readily detected. Fluorescence power as high as 4 nW for the degenerate design and 5 nW for the non-degenerate design were detected. The conversion efficiency was 4176 %/Wcm^2 and 874 %/Wcm^2, respectively. Neither design was found to emit near the design wavelength. In general, the signal is between 1600-1800 nm and the idler is between 2200-2400 nm. Improvements in laser performance are expected to drastically increase the conversion efficiency.
3

Monolithic Integration of Active and Second-order Nonlinear Functionality in Bragg Reflection Waveguides

Bijlani, Bhavin J. 29 August 2011 (has links)
This thesis explored the theory, design, fabrication and characterization of AlGaAs Bragg reflection waveguides (BRW) towards the goal of a platform for monolithic integration of active and optically nonlinear devices. Through integration of a diode laser and nonlinear phase-matched cavity, the possibility of on-chip nonlinear frequency generation was explored. Such integrated devices would be highly useful as a robust, alignment free, small footprint and electrically injected alternative to bulk optic systems. A theoretical framework for modal analysis of arbitrary 1-D photonic crystal defect waveguides is developed. This method relies on the transverse resonance condition. It is then demonstrated in the context of several types of Bragg reflection waveguides. The framework is then extended to phase-match second-order nonlinearities and incorporating quantum-wells for diode lasers. Experiments within a slab and ridge waveguide demonstrated phase-matched Type-I second harmonic generation at fundamental wavelength of 1587 and 1600 nm, respectively; a first for this type of waveguide. For the slab waveguide, conversion efficiency was 0.1 %/W. In the more strongly confined ridge waveguides, efficiency increased to 8.6 %/W owing to the increased intensity. The normalized conversion efficiency was estimated to be at 600 %/Wcm^2. Diode lasers emitting at 980 nm in the BRW mode were also fabricated. Verification of the Bragg mode was performed through imaging the near- field of the mode. Propagation loss of this type of mode was measured directly for the first time at 14 cm^-1. The lasers were found to be very insensitive with characteristic temperature at 215 K. Two designs incorporating both laser and phase-matched nonlinearity within the same cavity were fabricated, for degenerate and non-degenerate down-conversion. Though the lasers were sub-optimal, a parametric fluorescence signal was readily detected. Fluorescence power as high as 4 nW for the degenerate design and 5 nW for the non-degenerate design were detected. The conversion efficiency was 4176 %/Wcm^2 and 874 %/Wcm^2, respectively. Neither design was found to emit near the design wavelength. In general, the signal is between 1600-1800 nm and the idler is between 2200-2400 nm. Improvements in laser performance are expected to drastically increase the conversion efficiency.
4

Waveguide Sources of Photon Pairs

Horn, Rolf January 2011 (has links)
This thesis describes various methods for producing photon pairs from waveguides. It covers relevant topics such as waveguide coupling and phase matching, along with the relevant measurement techniques used to infer photon pair production. A new proposal to solve the phase matching problem is described along with two conceptual methods for generating entangled photon pairs. Photon pairs are also experimentally demonstrated from a third novel structure called a Bragg Reflection Waveguide (BRW). The new proposal to solve the phase matching problem is called Directional Quasi-Phase Matching (DQPM). It is a technique that exploits the directional dependence of the non-linear susceptiblity ($\chi^{(2)}$) tensor. It is aimed at those materials that do not allow birefringent phase-matching or periodic poling. In particular, it focuses on waveguides in which the interplay between the propagation direction, electric field polarizations and the nonlinearity can change the strength and sign of the nonlinear interaction periodically to achieve quasi-phasematching. One of the new conceptual methods for generating entangled photon pairs involves a new technique that sandwiches two waveguides from two differently oriented but similar crystals together. The idea stems from the design of a Michelson interferometer which interferes the paths over which two unique photon pair processes can occur, thereby creating entanglement in any pair of photons created in the interferometer. By forcing or sandwiching the two waveguides together, the physical space that exists in the standard Micheleson type interferometer is made non-existent, and the interferometer is effectively squashed. The result is that the two unique photon pair processes actually occupy the same physical path. This benefits the stability of the interferometer in addition to miniaturizing it. The technical challenges involved in sandwiching the two waveguides are briefly discussed. The main result of this thesis is the observation of photon pairs from the BRW. By analyzing the time correlation between two single photon detection events, spontaneous parametric down conversion (SPDC) of a picosecond pulsed ti:sapph laser is demonstrated. The process is mediated by a ridge BRW. The results show evidence for type-0, type-I and type-II phase matching of pump light at 783nm, 786nm and 789nm to down converted light that is strongly degenerate at 1566nm, 1572nm, and 1578nm respectively. The inferred efficiency of the BRW was 9.8$\cdot$10$^{-9}$ photon pairs per pump photon. This contrasts with the predicted type-0 efficiency of 2.65$\cdot$10$^{-11}$. This data is presented for the first time in such waveguides, and represents significant advances towards the integration of sources of quantum information into the existing telecommunications infrastructure.
5

Phase-matching Second-order Optical Nonlinear Interactions using Bragg Reflection Waveguides: A Platform for Integrated Parametric Devices

Abolghasem, Payam 29 August 2011 (has links)
Bragg reflection waveguides (BRW) or one-dimensional photonic bandgap structures have been demonstrated for phase-matching chi(2) nonlinearities in AlxGa1-xAs. The method exploits strong modal dispersion of a Bragg mode and total internal reflection modes co-propagating inside the waveguide. It is shown that phase-matching is attained among the lowest order modes of interacting harmonics, which allows maximizing the utilization of harmonics powers for nonlinear interactions. As our first demonstration, we report second-harmonic generation (SHG) of a 2-ps telecommunication pump in a 2.4 mm long slab BRW. The conversion efficiency is estimated as 2.0 %/W.cm^2 with a generated SH power of 729 nW. This efficiency has been considerably improved by introducing lateral confinement of optical modes in ridge structures. Characterizations denote that efficiency of SHG in ridge BRWs can increase by over an order of magnitude in comparison to that of the slab device. Also, we report continuous-wave SHG in BRWs. Using a telecommunication pump with a power of 98 mW, the continuous-wave SH power of 23 nW is measured in a 2.0 mm long device. Significant enhancements of chi(2) interactions is obtained in the modified design of matching-layer enhanced BRW (ML-BRW). For the first time, we report type-II SHG in ML-BRW, where the second-harmonic power of 60 µW is measured for a pump power of 3.3 mW in a 2.2 mm long sample. Also, we demonstrate the existence of type-0 SHG, where both pump and SH signal have an identical TM polarization state. It is shown that the efficiency of the type-0 process is comparable to type-I and type-II processes with the phase-matching wavelengths of all three interactions lying within a spectral window as small as 17 nm. ML-BRW is further reported for sum-frequency and difference-frequency generations. For applications requiring high pump power, a generalized ML-BRW design is proposed and demonstrated. The proposed structure offsets the destructive effects of third-order nonlinearities on chi(2) processes when high power harmonics are involved. This is carried out through incorporation of larger bandgap materials by using high aluminum content AlxGa1-xAs layers without undermining the nonlinear conversion efficiency. Theoretical investigations of BRWs as integrated sources of photon-pairs with frequency correlation properties are discussed. It is shown that the versatile dispersion properties in BRWs enables generation of telecommunication anti-correlated photon-pairs with bandwidth tunablity between 1 nm and 450 nm.
6

Phase-matching Second-order Optical Nonlinear Interactions using Bragg Reflection Waveguides: A Platform for Integrated Parametric Devices

Abolghasem, Payam 29 August 2011 (has links)
Bragg reflection waveguides (BRW) or one-dimensional photonic bandgap structures have been demonstrated for phase-matching chi(2) nonlinearities in AlxGa1-xAs. The method exploits strong modal dispersion of a Bragg mode and total internal reflection modes co-propagating inside the waveguide. It is shown that phase-matching is attained among the lowest order modes of interacting harmonics, which allows maximizing the utilization of harmonics powers for nonlinear interactions. As our first demonstration, we report second-harmonic generation (SHG) of a 2-ps telecommunication pump in a 2.4 mm long slab BRW. The conversion efficiency is estimated as 2.0 %/W.cm^2 with a generated SH power of 729 nW. This efficiency has been considerably improved by introducing lateral confinement of optical modes in ridge structures. Characterizations denote that efficiency of SHG in ridge BRWs can increase by over an order of magnitude in comparison to that of the slab device. Also, we report continuous-wave SHG in BRWs. Using a telecommunication pump with a power of 98 mW, the continuous-wave SH power of 23 nW is measured in a 2.0 mm long device. Significant enhancements of chi(2) interactions is obtained in the modified design of matching-layer enhanced BRW (ML-BRW). For the first time, we report type-II SHG in ML-BRW, where the second-harmonic power of 60 µW is measured for a pump power of 3.3 mW in a 2.2 mm long sample. Also, we demonstrate the existence of type-0 SHG, where both pump and SH signal have an identical TM polarization state. It is shown that the efficiency of the type-0 process is comparable to type-I and type-II processes with the phase-matching wavelengths of all three interactions lying within a spectral window as small as 17 nm. ML-BRW is further reported for sum-frequency and difference-frequency generations. For applications requiring high pump power, a generalized ML-BRW design is proposed and demonstrated. The proposed structure offsets the destructive effects of third-order nonlinearities on chi(2) processes when high power harmonics are involved. This is carried out through incorporation of larger bandgap materials by using high aluminum content AlxGa1-xAs layers without undermining the nonlinear conversion efficiency. Theoretical investigations of BRWs as integrated sources of photon-pairs with frequency correlation properties are discussed. It is shown that the versatile dispersion properties in BRWs enables generation of telecommunication anti-correlated photon-pairs with bandwidth tunablity between 1 nm and 450 nm.

Page generated in 0.124 seconds