Spelling suggestions: "subject:"diode lasers"" "subject:"riode lasers""
1 |
Synchronization and control of chaos in external cavity semiconductor lasersWallace, Iain D. January 2000 (has links)
No description available.
|
2 |
Optically pumped vertical external cavity surface emitting semiconductor lasersHoogland, Sjoerd January 2003 (has links)
No description available.
|
3 |
Modelling diode-pumped solid-state lasers.Bernhardi, Edward H. January 2008 (has links)
This thesis consists of three main parts. An introduction to diode-pumped solid-state lasers, thermal modelling of solid-state lasers and rate-equation modelling of solid-state lasers. The first part explains the basic components and operation principles of a typical diode-end-pumped solid-state laser. The stimulated emission process, solid-state laser gain media, various pump geometries and a basic end-pumped laser resonator configuration are among the topics that are explained. Since thermal effects are one of the main limiting factors in the power-scaling of diode-pumped solid-state lasers, the second part of this thesis describes numerical and analytical thermal models that determine the thermal lens and thermally induced stresses in a laser crystal. As a first step, a time-independent numerical thermal model which calculates the three-dimensional temperature distribution in the laser crystal is implemented. In order to calculate the time dependent thermally induced stresses in a laser crystal, a coupled thermal-stress finite element analysis model was implemented. Even though some steady-state analytical solutions for simple crystal geometries do exist, the finite element analysis approach was taken so that the time dependent thermally induced stresses could be calculated for birefringent crystals of various geometries. In order to validate the numerical results, they are compared to experimental data and analytical solutions where possible. In the last part, the population dynamics inside the laser gain medium are described and modelled with a quasi-three-level rate-equation model. A comprehensive spatially resolved rate-equation model is developed and discussed. In order to simplify the implementation of the rate-equation model as a computer simulation, the spatial dependence of the laser parameters is ignored so that the model reduces to a singleelement plane-wave model. The simplified rate-equation model is implemented and solved numerically. The model is applied to a four-level CW and Q-switched Nd:YLF laser as well as a quasi-three-level QCW Tm:GdV04 laser. The models' predictions are thoroughly verified with experimental results and also with analytical solutions where possible. / Thesis (M.Sc.)-University of KwaZulu-Natal, 2008.
|
4 |
Single Mode Tunable Short External Cavity Semiconductor Diode LasersBonnell, Lee 01 1900 (has links)
This thesis describes the use of short external cavity (SXC) semiconductor diode lasers as single longitudinal mode (SM) tunable sources. A SXC forces a multimode diode laser to lase on a single longitudinal mode. Various laser types were investigated in SXC configurations using both planar and spherical external mirrors. The side mode suppression ratio (SMSR) and the SM tuning range were measured with respect to the positioning of the external cavity element. With a planar mirror as the SXC element, SMSR of —33 dB and SM tuning ranges of 1 nm (110% of a mode spacing) were obtained with inverted rib waveguide (IRW) lasers. For external cavity lengths of ~ 60 um the total continuous SM tuning range summed over all modes was found to be 72 cm^-1 or 12 nm. The use of a spherical mirror improved the results. A SXC laser consisting of a spherical mirror and an IRW laser had SMSR values of —37 dB and SM tuning ranges of 1.10 nm. Power and voltage characteristics of SM SXC lasers were also examined. It was found possible to use the laser voltage and electronic feedback to control the external cavity length for optimum SM output. The external differential quantum efficiency (DQE) was found to be wavelength dependent and may be explained by the wavelength dependence of the scattering/absorption loss. One aspect of the characteristic trend of the DQE with respect to wavelength is that it offers the possibility of determining the lasing wavelength of the SM without the use of a monochromator. / Thesis / Master of Engineering (ME)
|
5 |
Development of InGaAsP/GaAs Diode Lasers for Ultrashot Pulse GenerationRoscoe, James 03 1900 (has links)
The groundwork has been completed for a large new research initiative involving the development of diode lasers for moderate power ultrashort pulse generation. This thesis reports on the status of three core areas of this initiative: InGaAsP/GaAs diode laser design and characterization, split contact device testing, and thin film interference filter deposition and characterization. Two new short wavelength diode laser designs have been realized and tested. A 980 nm laser was designed, using an InGaAsP barrier/waveguide region. This showed improved far field performance and better contact isolation as compared to an existing 980 nm laser using GaAs barriers. A laser emitting at 850 nm was also designed using GaAs quantum wells surrounded by a new quaternary waveguide region. A test arrangement was developed to facilitate the measurement of IV and LI curves for split contact lasers. Numerous lasers were tested, indicating that short absorber sections and narrow gap widths are preferable for use as saturable absorbing regions in a passively mode locked diode laser. Finally, thin film silicon oxynitride interference filters have been designed, deposited, and characterized for several antireflecting and high reflectance coatings on semiconductor laser facets. A comparison ofsingle layer AR coatings accounting for the modal reflectivity was performed. A four layer high reflectance coating with a peak broadband reflectance of over 90% was deposited on a laser facet. / Thesis / Master of Engineering (ME)
|
6 |
Ultrashort-pulse generation from quantum-dot semiconductor diode lasersCataluna, Maria Ana January 2008 (has links)
In this thesis, novel regimes of mode locking in quantum dot semiconductor laser diodes have been investigated by exploiting the unique features offered by quantum dots. Using an unconventional approach, the role of excited state transitions in the quantum dots was exploited as an additional degree of freedom for the mode locking of experimental quantum dot lasers. For the first time, passive mode locking via ground (1260nm) or excited state (1190nm) was demonstrated in a quantum dot laser. Picosecond pulses were generated at a repetition rate of 21GHz and 20.5GHz, for the ground and excited states respectively, with average powers in excess of 25mW. Switching between these two states in the mode-locking regime was achieved by changing the electrical biasing conditions, thus providing full control of the operating spectral band. A novel regime for mode locking in a quantum-dot laser was also investigated, where the simultaneous presence of cw emission in the excited-state band at high injection current levels, dramatically reduced the duration of the pulses generated via the ground state, whilst simultaneously boosting its peak power. This represents a radically different trend from the one typically observed in mode-locked lasers. From this investigation, it was concluded that the role of the excited state can not be neglected in the generation of ultrashort pulses from quantum-dot lasers. Stable passive mode locking of a quantum-dot laser over an extended temperature range (from 20ºC to 80ºC) was also demonstrated at relatively high output average powers. It was observed that the pulse duration and the spectral width decreased significantly as the temperature was increased up to 70ºC. The process of carrier escape in the absorber was identified as the main contributing factor that led to a decrease in the absorber recovery time as a function of increasing temperature which facilitated a decrease in the pulse durations. These results are shown to open the way for the ultimate deployment of ultra stable and uncooled mode-locked semiconductor diode lasers.
|
7 |
Influência dos tratamentos dessensibilizantes associados ao laser de diodo na permeabilidade dentinária / Influence of desensitizing treatments associated with diode laser on dentin permeability.Sanches, Júlia Olien 10 January 2013 (has links)
Objetivo: Este estudo avaliou o efeito dos agentes dessensibilizantes associados ou não ao laser de diodo na permeabilidade dentinária e na morfologia da superfície. Materiais e Métodos: Para este estudo, 104 espécimes de dentina radicular bovina foram divididos aleatoriamente em 4 grupos e 2 subgrupos (n=13): G1A= nenhum tratamento (controle), G1B= laser de diodo, G2A= Oxagel, G2B= laser de diodo + Oxagel, G3A= Mi Paste, G3B= laser de diodo + Mi Paste, G4A= Sensitive Pró-Alívio dessensibilizante, G4B= laser de diodo + Sensitive Pró-Alívio dessensibilizante. Para análise da permeabilidade, 10 espécimes de cada grupo foram imersos em ácido clorídrico a 1% durante 20 segundos, 3 vezes, com intervalo de 2 horas entre as imersões, para exposição dos túbulos dentinários. A aplicação dos agentes dessensibilizantes foi feita de acordo com as instruções do fabricante e a irradiação com o laser de diodo foi feita no modo contato, comprimento de onda de 970 nm +/- 10 nm, potência máxima de 7 W CW, frequência de 10 Hz, durante 25 segundos. Em seguida, os espécimes foram submetidos à coloração histoquímica e seccionados para serem analisados quanto à permeabilidade por meio de microscopia óptica (MO). A permeabilidade dentinária foi dada pela porcentagem de penetração do corante em relação à área total do espécime seccionado. Os espécimes remanescentes (n = 3) foram utilizados para análise microscópica da superfície que foi dividida em duas áreas (controle e tratada). A exposição dos túbulos dentinários e a aplicação dos tratamentos foram realizadas da forma já descrita e, na sequência, os espécimes foram avaliados em microscopia eletrônica de varredura (MEV). Os valores obtidos de permeabilidade foram analisados através da ANOVA. Resultados: Nenhuma diferença estatística significante foi observada entre os tratamentos. Na microscopia eletrônica de varredura, foi observada uma ligeira diferença entre a área tratada e a área controle, exceto no grupo 4B. Comparando os grupos A e B (sem e associado ao laser, respectivamente), nenhuma mudança significativa foi notada na superfície dentinária. Conclusão: A aplicação dos agentes dessensibilizantes associados ou não ao laser diodo não influenciou na permeabilidade dentinária radicular e na morfologia da superfície dentinária. / Objective: This study evaluated the effect of desensitizing agents associated or not with laser diode on dentin permeability and surface morphology. Materials and Methods: For this study, 104 bovine root dentin specimens were randomly divided into 4 groups and 2 subgroups (n = 13): G1A = no treatment (control), G1B= diode laser, G2A= Oxagel, G2B= diode laser + Oxagel, G3A= Mi Paste, G3B= diode laser + Mi Paste, G4A= Sensitive Pro-Relief desensitizing, G4B= diode laser + Sensitive Pro-Relief desensitizing. For permeability analysis , 10 specimens were immersed in 1% hydrochloric acid for 20 seconds, three times, with an interval of 2 hours between them, to expose the dentinal tubules. The application of desensitizing agents was performed according to the manufacturers instructions and the irradiation with the laser diode was made on contact mode, wavelength of 970 nm +/- 10 nm, maximum output 7 W CW, 10 Hz, for 25 seconds. After that, the specimens were imaged in an optical microscope (OM) and permeability was measured in the digitized images as the percentage of cooper ions penetration over the total area. The remaining specimens (n = 3) were used for surface microscopic analysis and they were divided in two areas (control and treated). The dentinal tubules exposure and the treatments application were performed as previously described and then analysed in scanning electron microscopy (SEM). The permeability values were analyzed using ANOVA. Results: No statistical significant difference among the treatments was observed. For scanning electron microscopy, there was a slight difference between the treated and control area, except for group 4B. Comparing groups A and B (without and associated with laser, respectively), no significant change was verified on the dentin surface. Conclusion: The application of desensitizing agents associated or not with diode laser did not affect the root dentin permeability and the dentin surface morphology.
|
8 |
Tailoring the emission of stripe-array diode lasers with external cavities to enable nonlinear frequency conversionJechow, Andreas January 2009 (has links)
A huge number of applications require coherent radiation in the visible spectral range. Since diode lasers are very compact and efficient light sources, there exists a great interest to cover these applications with diode laser emission. Despite modern band gap engineering not all wavelengths can be accessed with diode laser radiation. Especially in the visible spectral range between 480 nm and 630 nm no emission from diode lasers is available, yet.
Nonlinear frequency conversion of near-infrared radiation is a common way to generate coherent emission in the visible spectral range. However, radiation with extraordinary spatial temporal and spectral quality is required to pump frequency conversion.
Broad area (BA) diode lasers are reliable high power light sources in the near-infrared spectral range. They belong to the most efficient coherent light sources with electro-optical efficiencies of more than 70%. Standard BA lasers are not suitable as pump lasers for frequency conversion because of their poor beam quality and spectral properties. For this purpose, tapered lasers and diode lasers with Bragg gratings are utilized. However, these new diode laser structures demand for additional manufacturing and assembling steps that makes their processing challenging and expensive.
An alternative to BA diode lasers is the stripe-array architecture. The emitting area of a stripe-array diode laser is comparable to a BA device and the manufacturing of these arrays requires only one additional process step. Such a stripe-array consists of several narrow striped emitters realized with close proximity. Due to the overlap of the fields of neighboring emitters or the presence of leaky waves, a strong coupling between the emitters exists. As a consequence, the emission of such an array is characterized by a so called supermode. However, for the free running stripe-array mode competition between several supermodes occurs because of the lack of wavelength stabilization. This leads to power fluctuations, spectral instabilities and poor beam quality.
Thus, it was necessary to study the emission properties of those stripe-arrays to find new concepts to realize an external synchronization of the emitters. The aim was to achieve stable longitudinal and transversal single mode operation with high output powers giving a brightness sufficient for efficient nonlinear frequency conversion.
For this purpose a comprehensive analysis of the stripe-array devices was done here. The physical effects that are the origin of the emission characteristics were investigated theoretically and experimentally. In this context numerical models could be verified and extended. A good agreement between simulation and experiment was observed.
One way to stabilize a specific supermode of an array is to operate it in an external cavity. Based on mathematical simulations and experimental work, it was possible to design novel external cavities to select a specific supermode and stabilize all emitters of the array at the same wavelength. This resulted in stable emission with 1 W output power, a narrow bandwidth in the range of 2 MHz and a very good beam quality with M²<1.5. This is a new level of brightness and brilliance compared to other BA and stripe-array diode laser systems. The emission from this external cavity diode laser (ECDL) satisfied the requirements for nonlinear frequency conversion. Furthermore, a huge improvement to existing concepts was made.
In the next step newly available periodically poled crystals were used for second harmonic generation (SHG) in single pass setups. With the stripe-array ECDL as pump source, more than 140 mW of coherent radiation at 488 nm could be generated with a very high opto-optical conversion efficiency. The generated blue light had very good transversal and longitudinal properties and could be used to generate biphotons by parametric down-conversion.
This was feasible because of the improvement made with the infrared stripe-array diode lasers due to the development of new physical concepts. / Für eine Vielzahl von interessanten Anwendungen z.B. in den Lebenswissenschaften werden kohärente Strahlquellen im sichtbaren Spektralbereich benötigt. Diese Strahlquellen sollen sich durch eine hohe Effizienz (d.h. Sparsamkeit), Mobilität und eine hohe Güte des emittierten Lichtes auszeichnen. Im Idealfall passt die Lichtquelle in die Hosentasche und kann mit herkömmlichen Batterien betrieben werden.
Diodenlaser sind solche kleinen und sehr effizienten Strahlquellen. Sie sind heutzutage allgegenwärtig, begegnen uns in CD-Playern, Laserdruckern oder an Supermarktkassen im täglichen Leben. Diodenlaser zeichnen sich durch ihren extrem hohen Wirkungsgrad aus, da hier elektrischer Strom direkt in Licht umgewandelt wird.
Jedoch können bisher noch nicht alle Wellenlängen im sichtbaren Bereich mit diesen Lasern realisiert werden. Eine Möglichkeit, diesen Wellenlängenbereich über einen Umweg zu erreichen, ist Frequenzkonversion von infrarotem in sichtbares Licht mit sogenannten nichtlinearen optischen Kristallen. Dies ist im Prinzip auch mit Diodenlasern möglich, konnte bisher jedoch nur sehr ineffizient oder mit erheblichem Aufwand umgesetzt werden.
Allerdings kann mit Hilfe von externen Resonatoren die Emission solcher Standard-Laserdioden maßgeblich beeinflusst und die Qualität des Lichtes erheblich verbessert werden.
Hier setzt die Zielsetzung dieser Arbeit an: Das Licht von infraroten Hochleistungslaserdioden, sogenannten „Streifen-Arrays“, sollte durch einen externen Resonator stabilisiert und für die Frequenzverdopplung erschlossen werden. Diese Arrays bestehen aus mehreren dicht nebeneinander angeordneten Einzelemittern und zeichnen sich dadurch aus, dass eine Kopplung dieser Emitter von außen möglich ist. Im ersten Schritt sollte eine solche Synchronisation der Emitter erreicht werden. In einem zweiten Schritt soll das von außen beeinflusste Licht des Arrays mit einer hohen Effizienz in sichtbares (blaues) Licht konvertiert werden um den Wirkungsgrad der Diodenlaser voll auszunutzen.
Dafür war es notwendig die Physik der Streifen-Arrays sorgfältig zu untersuchen. Es mussten Methoden entwickelt werden, durch die eine gezielte Beeinflussung der Emitter möglich ist, damit es zu einer globalen Kopplung und Synchronisation der Array Emitter kommt. Dafür wurden mit Hilfe von mathematischen Modellierungen und Experimenten verschiedene Resonatorkonzepte entwickelt und realisiert.
Schlussendlich war es möglich, die Emissionseigenschaften der Arrays um mehrere Größenordnungen zu verbessern und sehr effizient kohärentes blaues Licht sehr hoher Güte zu erzeugen. In einem weiteren Experiment ist es zusätzlich gelungen nichtklassisches Licht bzw. Paarphotonen zu generieren, die ebenfalls interessant für die Lebenswissenschaften sind.
|
9 |
Monolithic Integration of Active and Second-order Nonlinear Functionality in Bragg Reflection WaveguidesBijlani, Bhavin J. 29 August 2011 (has links)
This thesis explored the theory, design, fabrication and characterization of AlGaAs Bragg reflection waveguides (BRW) towards the goal of a platform for monolithic integration of active and optically nonlinear devices. Through integration of a diode laser and nonlinear phase-matched cavity, the possibility of on-chip nonlinear frequency generation was explored. Such integrated devices would be highly useful as a robust, alignment free, small footprint and electrically injected alternative to bulk optic systems.
A theoretical framework for modal analysis of arbitrary 1-D photonic crystal defect waveguides is developed. This method relies on the transverse resonance condition. It is then demonstrated in the context of several types of Bragg reflection waveguides. The framework is then extended to phase-match second-order nonlinearities and incorporating quantum-wells for diode lasers.
Experiments within a slab and ridge waveguide demonstrated phase-matched Type-I second harmonic generation at fundamental wavelength of 1587 and 1600 nm, respectively; a first for this type of waveguide. For the slab waveguide, conversion efficiency was 0.1 %/W. In the more strongly confined ridge waveguides, efficiency increased to 8.6 %/W owing to the increased intensity. The normalized conversion efficiency was estimated to be at 600 %/Wcm^2.
Diode lasers emitting at 980 nm in the BRW mode were also fabricated. Verification of the Bragg mode was performed through imaging the near- field of the mode. Propagation loss of this type of mode was measured directly for the first time at 14 cm^-1. The lasers were found to be very insensitive with characteristic temperature at 215 K.
Two designs incorporating both laser and phase-matched nonlinearity within the same cavity were fabricated, for degenerate and non-degenerate down-conversion. Though the lasers were sub-optimal, a parametric fluorescence signal was readily detected. Fluorescence power as high as 4 nW for the degenerate design and 5 nW for the non-degenerate design were detected. The conversion efficiency was 4176 %/Wcm^2 and 874 %/Wcm^2, respectively. Neither design was found to emit near the design wavelength. In general, the signal is between 1600-1800 nm and the idler is between 2200-2400 nm. Improvements in laser performance are expected to drastically increase the conversion efficiency.
|
10 |
Monolithic Integration of Active and Second-order Nonlinear Functionality in Bragg Reflection WaveguidesBijlani, Bhavin J. 29 August 2011 (has links)
This thesis explored the theory, design, fabrication and characterization of AlGaAs Bragg reflection waveguides (BRW) towards the goal of a platform for monolithic integration of active and optically nonlinear devices. Through integration of a diode laser and nonlinear phase-matched cavity, the possibility of on-chip nonlinear frequency generation was explored. Such integrated devices would be highly useful as a robust, alignment free, small footprint and electrically injected alternative to bulk optic systems.
A theoretical framework for modal analysis of arbitrary 1-D photonic crystal defect waveguides is developed. This method relies on the transverse resonance condition. It is then demonstrated in the context of several types of Bragg reflection waveguides. The framework is then extended to phase-match second-order nonlinearities and incorporating quantum-wells for diode lasers.
Experiments within a slab and ridge waveguide demonstrated phase-matched Type-I second harmonic generation at fundamental wavelength of 1587 and 1600 nm, respectively; a first for this type of waveguide. For the slab waveguide, conversion efficiency was 0.1 %/W. In the more strongly confined ridge waveguides, efficiency increased to 8.6 %/W owing to the increased intensity. The normalized conversion efficiency was estimated to be at 600 %/Wcm^2.
Diode lasers emitting at 980 nm in the BRW mode were also fabricated. Verification of the Bragg mode was performed through imaging the near- field of the mode. Propagation loss of this type of mode was measured directly for the first time at 14 cm^-1. The lasers were found to be very insensitive with characteristic temperature at 215 K.
Two designs incorporating both laser and phase-matched nonlinearity within the same cavity were fabricated, for degenerate and non-degenerate down-conversion. Though the lasers were sub-optimal, a parametric fluorescence signal was readily detected. Fluorescence power as high as 4 nW for the degenerate design and 5 nW for the non-degenerate design were detected. The conversion efficiency was 4176 %/Wcm^2 and 874 %/Wcm^2, respectively. Neither design was found to emit near the design wavelength. In general, the signal is between 1600-1800 nm and the idler is between 2200-2400 nm. Improvements in laser performance are expected to drastically increase the conversion efficiency.
|
Page generated in 0.0732 seconds