Spelling suggestions: "subject:"braincomputer interface (BCI)"" "subject:"brandcomputer interface (BCI)""
21 |
Méthodes pour l'électroencéphalographie multi-sujet et application aux interfaces cerveau-ordinateur / Methods for multi-subject electroencephalography and application to brain-computer interfacesKorczowski, Louis 17 October 2018 (has links)
L'étude par neuro-imagerie de l'activité de plusieurs cerveaux en interaction (hyperscanning) permet d'étendre notre compréhension des neurosciences sociales. Nous proposons un cadre pour l'hyperscanning utilisant les interfaces cerveau-ordinateur multi-utilisateur qui inclut différents paradigmes sociaux tels que la coopération ou la compétition. Les travaux de cette thèse comportent trois contributions interdépendantes. Notre première contribution est le développement d'une plateforme expérimentale sous la forme d'un jeu vidéo multijoueur, nommé Brain Invaders 2, contrôlé par la classification de potentiels évoqués visuels enregistrés par électroencéphalographie (EEG). Cette plateforme est validée par deux protocoles expérimentaux comprenant dix-neuf et vingt-deux paires de sujets et utilise différentes approches de classification adaptative par géométrie riemannienne. Ces approches sont théoriquement et expérimentalement comparées et nous montrons la supériorité de la fusion des classifieurs indépendants sur la classification d'un hypercerveau durant la seconde contribution. L'analyse de coïncidence des signaux entre les individus est une approche classique pour l'hyperscanning, elle est pourtant difficile quand les signaux EEG concernés sont transitoires avec une grande variabilité (intra- et inter-sujet) spatio-temporelle et avec un faible rapport signal-à-bruit. En troisième contribution, nous proposons un nouveau modèle composite de séparation aveugle de sources physiologiquement plausibles permettant de compenser cette variabilité. Une solution par diagonalisation conjointe approchée est proposée avec une implémentation d'un algorithme de type Jacobi. A partir des données de Brain Invaders 2, nous montrons que cette solution permet d'extraire simultanément des sources d'artéfacts, des sources d'EEG évoquées et des sources d'EEG continues avec plus de robustesse et de précision que les modèles existants. / The study of several brains interacting (hyperscanning) with neuroimagery allows to extend our understanding of social neurosciences. We propose a framework for hyperscanning using multi-user Brain-Computer Interfaces (BCI) that includes several social paradigms such as cooperation or competition. This dissertation includes three interdependent contribution. The first contribution is the development of an experimental platform consisting of a multi-player video game, namely Brain Invaders 2, controlled by classification of visual event related potentials (ERP) recorded by electroencephalography (EEG). The plateform is validated through two experimental protocols including nineteen and twenty two pairs of subjects while using different adaptive classification approaches using Riemannian geometry. Those approaches are theoretically and experimentally compared during the second contribution ; we demonstrates the superiority in term of accuracy of merging independent classifications over the classification of the hyperbrain during the second contribution. Analysis of inter-brain synchronizations is a common approach for hyperscanning, however it is challenging for transient EEG waves with an great spatio-temporal variability (intra- and inter-subject) and with low signal-to-noise ratio such as ERP. Therefore, as third contribution, we propose a new blind source separation model, namely composite model, to extract simultaneously evoked EEG sources and ongoing EEG sources that allows to compensate this variability. A solution using approximate joint diagonalization is given and implemented with a fast Jacobi-like algorithm. We demonstrate on Brain Invaders 2 data that our solution extracts simultaneously evoked and ongoing EEG sources and performs better in term of accuracy and robustness compared to the existing models.
|
22 |
Classification Of Motor Imagery Tasks In Eeg Signal And Its Application To A Brain-computer Interface For Controlling Assistive Environmental DevicesAcar, Erman 01 February 2011 (has links) (PDF)
This study focuses on realization of a Brain Computer Interface (BCI)for the paralyzed to control assistive environmental devices. For this purpose, different motor imagery tasks are classified using different signal processing methods. Specifically, band-pass filtering, Laplacian filtering, and common average reference (CAR) filtering areused to enhance the EEG signal. For feature extraction / Common Spatial Pattern (CSP), Power Spectral Density (PSD), and Principal Component Analysis (PCA) are tested. Linear Feature Normalization (LFN), Gaussian Feature Normalization (GFN), and Unit-norm Feature Vector Normalization (UFVN) are studied in Support Vector Machine (SVM) and Artificial Neural Network (ANN) classification. In order to evaluate and compare the performance of the methodologies, classification accuracy, Cohen&rsquo / s kappa coefficient, and Nykopp&rsquo / s information transfer are utilized.
The first experiments on classifying motor imagery tasks are realized on the 3-class dataset (V) provided for BCI Competition III. Also, a 4-class problem is studied using the dataset (IIa) provided for BCI Competition IV. Then, 5 different tasks are studied in the METU Brain Research Laboratory to find the optimum number and type of tasks to control a motor imagery based BCI. Thereafter, an interface is designed for the paralyzed to control assistive environmental devices. Finally, a test application is implemented and online performance of the design is evaluated.
|
23 |
Expectation-Maximization (EM) Algorithm Based Kalman Smoother For ERD/ERS Brain-Computer Interface (BCI)Khan, Md. Emtiyaz 06 1900 (has links) (PDF)
No description available.
|
24 |
BRAIN-COMPUTER INTERFACE FOR SUPERVISORY CONTROLS OF UNMANNED AERIAL VEHICLESAbdelrahman Osama Gad (17965229) 15 February 2024 (has links)
<p dir="ltr">This research explored a solution to a high accident rate in remotely operating Unmanned Aerial Vehicles (UAVs) in a complex environment; it presented a new Brain-Computer Interface (BCI) enabled supervisory control system to fuse human and machine intelligence seamlessly. This study was highly motivated by the critical need to enhance the safety and reliability of UAV operations, where accidents often stemmed from human errors during manual controls. Existing BCIs confronted the challenge of trading off a fully remote control by humans and an automated control by computers. This study met such a challenge with the proposed supervisory control system to optimize human-machine collaboration, prioritizing safety, adaptability, and precision in operation.</p><p dir="ltr">The research work included designing, training, and testing BCI and the BCI-enabled control system. It was customized to control a UAV where the user’s motion intents and cognitive states were monitored to implement hybrid human and machine controls. The DJI Tello drone was used as an intelligent machine to illustrate the application of the proposed control system and evaluate its effectiveness through two case studies. The first case study was designed to train a subject and assess the confidence level for BCI in capturing and classifying the subject’s motion intents. The second case study illustrated the application of BCI in controlling the drone to fulfill its missions.</p><p dir="ltr">The proposed supervisory control system was at the forefront of cognitive state monitoring to leverage the power of an ML model. This model was innovative compared to conventional methods in that it could capture complicated patterns within raw EEG data and make decisions to adopt an ensemble learning strategy with the XGBoost. One of the key innovations was capturing the user’s intents and interpreting these into control commands using the EmotivBCI app. Despite the headset's predefined set of detectable features, the system could train the user’s mind to generate control commands for all six degrees of freedom of adapting to the quadcopter by creatively combining and extending mental commands, particularly in the context of the Yaw rotation. This strategic manipulation of commands showcased the system's flexibility in accommodating the intricate control requirements of an automated machine.</p><p dir="ltr">Another innovation of the proposed system was its real-time adaptability. The supervisory control system continuously monitors the user's cognitive state, allowing instantaneous adjustments in response to changing conditions. This innovation ensured that the control system was responsive to the user’s intent and adept at prioritizing safety through the arbitrating mechanism when necessary.</p>
|
25 |
Using multi-modal bio-digital technologies to support the assessment of cognitive abilities of children with physical and neurological impairmentsGan, Hock Chye January 2015 (has links)
Current studies done using a learning test for children have problems as they only make evaluations of Physically and Neurologically Impaired (PNI) children who can succeed in the test and can be considered as a PASS/FAIL test. This pilot study takes a holistic view of cognitive testing of PNI children using a user-test-device triad model and provides a framework using non-PNI children and adults as controls. Comparisons using adapted off-the-shelf novel interfaces to the computer, in particular, an Electroencephalograph (EEG) head-set, an eye-tracker and a head-tracker and a common mouse were carried out. In addition, two novel multi-modal technologies were developed based on the use of brain-waves and eye-tracking as well as head-tracking technologies to support the study. The devices were used on three tests with increasing cognitive complexity. A self-developed measure based on success streaks (consecutive outcomes) was introduced to improve evaluations of PNI children. A theoretical model regarding a fit of ability to devices was initially setup and finally modified to fit the view of the empirical model that emerged from the outcomes of the study. Results suggest that while multi-modal technologies can address weaknesses of the individual component modes, a compromise is made between the user’s ability for multi-tasking between the modes and the benefits of a multi-modal device but the sample size is very small. Results also show children failing a test with a mouse but passing it subsequently when direct communication is used suggesting that a device can affect a test for children who are of a developing age. This study provides a framework for a more meaningful conversation between educational psychologists as well as other professionals and PNI parents because it provides more discrimination of outcomes in cognitive tests for PNI children. The framework provides a vehicle that addresses scientifically the concerns of parents and schools.
|
26 |
A Multi-Modal, Modified-Feedback and Self-Paced Brain-Computer Interface (BCI) to Control an Embodied Avatar's GaitAlchalabi, Bilal 12 1900 (has links)
Brain-computer interfaces (BCI) have been used to control the gait of a virtual self-avatar with the
aim of being used in gait rehabilitation. A BCI decodes the brain signals representing a desire to
do something and transforms them into a control command for controlling external devices.
The feelings described by the participants when they control a self-avatar in an immersive virtual
environment (VE) demonstrate that humans can be embodied in the surrogate body of an avatar
(ownership illusion). It has recently been shown that inducing the ownership illusion and then
manipulating the movements of one’s self-avatar can lead to compensatory motor control
strategies.
In order to maximize this effect, there is a need for a method that measures and monitors
embodiment levels of participants immersed in virtual reality (VR) to induce and maintain a strong
ownership illusion. This is particularly true given that reaching a high level of both BCI
performance and embodiment are inter-connected. To reach one of them, the second must be
reached as well. Some limitations of many existing systems hinder their adoption for
neurorehabilitation: 1- some use motor imagery (MI) of movements other than gait; 2- most
systems allow the user to take single steps or to walk but do not allow both, which prevents users
from progressing from steps to gait; 3- most of them function in a single BCI mode (cue-paced or
self-paced), which prevents users from progressing from machine-dependent to machine-independent
walking. Overcoming the aforementioned limitations can be done by combining
different control modes and options in one single system. However, this would have a negative
impact on BCI performance, therefore diminishing its usefulness as a potential rehabilitation tool.
In this case, there will be a need to enhance BCI performance. For such purpose, many techniques
have been used in the literature, such as providing modified feedback (whereby the presented
feedback is not consistent with the user’s MI), sequential training (recalibrating the classifier as
more data becomes available).
This thesis was developed over 3 studies. The objective in study 1 was to investigate the possibility
of measuring the level of embodiment of an immersive self-avatar, during the performing,
observing and imagining of gait, using electroencephalogram (EEG) techniques, by presenting
visual feedback that conflicts with the desired movement of embodied participants.
The objective of study 2 was to develop and validate a BCI to control single steps and forward
walking of an immersive virtual reality (VR) self-avatar, using mental imagery of these actions, in
cue-paced and self-paced modes. Different performance enhancement strategies were
implemented to increase BCI performance.
The data of these two studies were then used in study 3 to construct a generic classifier that could
eliminate offline calibration for future users and shorten training time.
Twenty different healthy participants took part in studies 1 and 2. In study 1, participants wore an
EEG cap and motion capture markers, with an avatar displayed in a head-mounted display (HMD)
from a first-person perspective (1PP). They were cued to either perform, watch or imagine a single
step forward or to initiate walking on a treadmill. For some of the trials, the avatar took a step with
the contralateral limb or stopped walking before the participant stopped (modified feedback).
In study 2, participants completed a 4-day sequential training to control the gait of an avatar in
both BCI modes. In cue-paced mode, they were cued to imagine a single step forward, using their
right or left foot, or to walk forward. In the self-paced mode, they were instructed to reach a target
using the MI of multiple steps (switch control mode) or maintaining the MI of forward walking
(continuous control mode). The avatar moved as a response to two calibrated regularized linear
discriminant analysis (RLDA) classifiers that used the μ power spectral density (PSD) over the
foot area of the motor cortex as features. The classifiers were retrained after every session. During
the training, and for some of the trials, positive modified feedback was presented to half of the
participants, where the avatar moved correctly regardless of the participant’s real performance.
In both studies, the participants’ subjective experience was analyzed using a questionnaire. Results
of study 1 show that subjective levels of embodiment correlate strongly with the power differences
of the event-related synchronization (ERS) within the μ frequency band, and over the motor and
pre-motor cortices between the modified and regular feedback trials.
Results of study 2 show that all participants were able to operate the cued-paced BCI and the selfpaced
BCI in both modes. For the cue-paced BCI, the average offline performance (classification
rate) on day 1 was 67±6.1% and 86±6.1% on day 3, showing that the recalibration of the classifiers
enhanced the offline performance of the BCI (p < 0.01). The average online performance was
85.9±8.4% for the modified feedback group (77-97%) versus 75% for the non-modified feedback
group. For self-paced BCI, the average performance was 83% at switch control and 92% at
continuous control mode, with a maximum of 12 seconds of control. Modified feedback enhanced
BCI performances (p =0.001). Finally, results of study 3 show that the constructed generic models
performed as well as models obtained from participant-specific offline data. The results show that
there it is possible to design a participant-independent zero-training BCI. / Les interfaces cerveau-ordinateur (ICO) ont été utilisées pour contrôler la marche d'un égo-avatar virtuel dans le but d'être utilisées dans la réadaptation de la marche. Une ICO décode les signaux du cerveau représentant un désir de faire produire un mouvement et les transforme en une commande de contrôle pour contrôler des appareils externes.
Les sentiments décrits par les participants lorsqu'ils contrôlent un égo-avatar dans un environnement virtuel immersif démontrent que les humains peuvent être incarnés dans un corps d'un avatar (illusion de propriété). Il a été récemment démontré que provoquer l’illusion de propriété puis manipuler les mouvements de l’égo-avatar peut conduire à des stratégies de contrôle moteur compensatoire.
Afin de maximiser cet effet, il existe un besoin d'une méthode qui mesure et surveille les niveaux d’incarnation des participants immergés dans la réalité virtuelle (RV) pour induire et maintenir une forte illusion de propriété.
D'autre part, atteindre un niveau élevé de performances (taux de classification) ICO et d’incarnation est interconnecté. Pour atteindre l'un d'eux, le second doit également être atteint. Certaines limitations de plusieurs de ces systèmes entravent leur adoption pour la neuroréhabilitation: 1- certains utilisent l'imagerie motrice (IM) des mouvements autres que la marche; 2- la plupart des systèmes permettent à l'utilisateur de faire des pas simples ou de marcher mais pas les deux, ce qui ne permet pas à un utilisateur de passer des pas à la marche; 3- la plupart fonctionnent en un seul mode d’ICO, rythmé (cue-paced) ou auto-rythmé (self-paced). Surmonter les limitations susmentionnées peut être fait en combinant différents modes et options de commande dans un seul système. Cependant, cela aurait un impact négatif sur les performances de l’ICO, diminuant ainsi son utilité en tant qu'outil potentiel de réhabilitation. Dans ce cas, il sera nécessaire d'améliorer les performances des ICO. À cette fin, de nombreuses techniques ont été utilisées dans la littérature, telles que la rétroaction modifiée, le recalibrage du classificateur et l'utilisation d'un classificateur générique.
Le projet de cette thèse a été réalisé en 3 études, avec objectif d'étudier dans l'étude 1, la possibilité de mesurer le niveau d'incarnation d'un égo-avatar immersif, lors de l'exécution, de l'observation et de l'imagination de la marche, à l'aide des techniques encéphalogramme (EEG), en présentant une rétroaction visuelle qui entre en conflit avec la commande du contrôle moteur des sujets incarnés. L'objectif de l'étude 2 était de développer un BCI pour contrôler les pas et la marche vers l’avant d'un égo-avatar dans la réalité virtuelle immersive, en utilisant l'imagerie motrice de ces actions, dans des modes rythmés et auto-rythmés. Différentes stratégies d'amélioration des performances ont été mises en œuvre pour augmenter la performance (taux de classification) de l’ICO.
Les données de ces deux études ont ensuite été utilisées dans l'étude 3 pour construire des classificateurs génériques qui pourraient éliminer la calibration hors ligne pour les futurs utilisateurs et raccourcir le temps de formation.
Vingt participants sains différents ont participé aux études 1 et 2. Dans l'étude 1, les participants portaient un casque EEG et des marqueurs de capture de mouvement, avec un avatar affiché dans un casque de RV du point de vue de la première personne (1PP). Ils ont été invités à performer, à regarder ou à imaginer un seul pas en avant ou la marche vers l’avant (pour quelques secondes) sur le tapis roulant. Pour certains essais, l'avatar a fait un pas avec le membre controlatéral ou a arrêté de marcher avant que le participant ne s'arrête (rétroaction modifiée).
Dans l'étude 2, les participants ont participé à un entrainement séquentiel de 4 jours pour contrôler la marche d'un avatar dans les deux modes de l’ICO. En mode rythmé, ils ont imaginé un seul pas en avant, en utilisant leur pied droit ou gauche, ou la marche vers l’avant . En mode auto-rythmé, il leur a été demandé d'atteindre une cible en utilisant l'imagerie motrice (IM) de plusieurs pas (mode de contrôle intermittent) ou en maintenir l'IM de marche vers l’avant (mode de contrôle continu). L'avatar s'est déplacé en réponse à deux classificateurs ‘Regularized Linear Discriminant Analysis’ (RLDA) calibrés qui utilisaient comme caractéristiques la densité spectrale de puissance (Power Spectral Density; PSD) des bandes de fréquences µ (8-12 Hz) sur la zone du pied du cortex moteur. Les classificateurs ont été recalibrés après chaque session. Au cours de l’entrainement et pour certains des essais, une rétroaction modifiée positive a été présentée à la moitié des participants, où l'avatar s'est déplacé correctement quelle que soit la performance réelle du participant. Dans les deux études, l'expérience subjective des participants a été analysée à l'aide d'un questionnaire.
Les résultats de l'étude 1 montrent que les niveaux subjectifs d’incarnation sont fortement corrélés à la différence de la puissance de la synchronisation liée à l’événement (Event-Related Synchronization; ERS) sur la bande de fréquence μ et sur le cortex moteur et prémoteur entre les essais de rétroaction modifiés et réguliers. L'étude 2 a montré que tous les participants étaient capables d’utiliser le BCI rythmé et auto-rythmé dans les deux modes. Pour le BCI rythmé, la performance hors ligne moyenne au jour 1 était de 67±6,1% et 86±6,1% au jour 3, ce qui montre que le recalibrage des classificateurs a amélioré la performance hors ligne du BCI (p <0,01). La performance en ligne moyenne était de 85,9±8,4% pour le groupe de rétroaction modifié (77-97%) contre 75% pour le groupe de rétroaction non modifié. Pour le BCI auto-rythmé, la performance moyenne était de 83% en commande de commutateur et de 92% en mode de commande continue, avec un maximum de 12 secondes de commande. Les performances de l’ICO ont été améliorées par la rétroaction modifiée (p = 0,001). Enfin, les résultats de l'étude 3 montrent que pour la classification des initialisations des pas et de la marche, il a été possible de construire des modèles génériques à partir de données hors ligne spécifiques aux participants. Les résultats montrent la possibilité de concevoir une ICO ne nécessitant aucun entraînement spécifique au participant.
|
27 |
EEG Source AnalysisCongedo, Marco 22 October 2013 (has links) (PDF)
Electroencephalographic data recorded on the human scalp can be modeled as a linear mixture of underlying dipolar source generators. The characterization of such generators is the aim of several families of signal processing methods. In this HDR we consider in several details three of such families, namely 1) EEG distributed inverse solutions, 2) diagonalization methods, including spatial filtering and blind source separation and 3) Riemannian geometry. We highlight our contributions in each of this family, we describe algorithms reporting all necessary information to make purposeful use of these methods and we give numerous examples with real data pertaining to our published studies. Traditionally only the single-subject scenario is considered; here we consider in addition the extension of some methods to the simultaneous multi-subject recording scenario. This HDR can be seen as an handbook for EEG source analysis. It will be particularly useful to students and other colleagues approaching the field.
|
Page generated in 0.1107 seconds