Spelling suggestions: "subject:"branch anda cut"" "subject:"branch ando cut""
1 |
Relaxations and solutions for the minimum graph bisection problem /Fügenschuh, Marzena. January 2007 (has links)
Zugl.: Darmstadt, Techn. University, Diss., 2007.
|
2 |
Multiple postmen problems fundamentals and new algorithmsAhr, Dino January 2004 (has links)
Zugl.: Heidelberg, Univ., Diss., 2004. - Hergestellt on demand
|
3 |
Struktur von Projektplanungsproblemen aus polyedertheoretischer Sicht /Hagmayer, Steffen. January 2006 (has links)
Zugl.: Karlsruhe, University, Diss., 2006.
|
4 |
Estratégias de resolução para o problema de job-shop flexível / Solution approaches for flexible job-shop scheduling problemPreviero, Wellington Donizeti 16 September 2016 (has links)
Nesta tese apresentamos duas estratégias para resolver o problema de job-shop flexível com o objetivo de minimizar o makespan. A primeira estratégia utiliza um algoritmo branch and cut (B&C) e a segunda abordagens matheuristics. O algoritmo B&C utiliza novas classes de inequações válidas, originalmente formulada para o problema de job-shop e estendida para o problema em questão. Para que as inequações válidas sejam eficientes, o modelo proposto por Birgin et al, (2014) (A milp model for an extended version of the fexible job shop problem. Optimization Letters, Springer, v. 8, n. 4, 1417-1431), é reformulado (MILP-2). A segunda estratégia utiliza as matheuristcs local branching e diversification, refining and tight-refining. Os experimentos computacionais mostraram que a inclusão dos planos de corte melhoram a relaxação do modelo MILP-2 e a qualidade das soluções. O algoritmo B&C reduziu o gap e o número de nós explorados para uma grande quantidade de instâncias. As abordagens matheuristics tiveram um excelente desempenho. Do total de 59 instâncias analisadas, somente em 3 problemas a resolução do modelo MILP-1 obteve melhores resultados do que as abordagens matheuristcs / This thesis proposes two approaches to solve the flexible job-shop scheduling problem to minimize the makespan. The first strategy uses a branch and cut algorithm (B&C) and the second approach is based on matheuristics. The B&C algorithm uses new classes of valid inequalities, originally formulated for job-shop scheduling problems and extended to the problem at hand. The second approach uses the matheuristics local branching and diversification, refining and tight-refining. For all valid inequalities to be effective, the precedence variable based model proposed by Birgin et al, (2014) (A milp model for an extended version of the fexible job shop problem. Optimization Letters, Springer, v. 8, n. 4, 1417-1431), is reformulated (MILP-2). The computational experiments showed that the inclusion of cutting planes tightened the linear programming relaxations and improved the quality of solutions. B&C algorithm reduced the gap value and the number of nodes explored in a large number of instances. The matheuristics approaches had an excellent performance. From 59 instances analized, MILP-1-Gurobi showed better results than matheuristics approaches in only 3 problems
|
5 |
Algorithmes d'optimisation pour la résolution du problème de stockage de conteneurs dans un terminal portuaire / Optimization algorithms for the resolution of container storage problem at seaport terminalNdiaye, Ndèye Fatma 23 June 2015 (has links)
ADans cette thède, nous traitons le problème de stockage de conteneurs dans un terminal portuaire. Dans un premier temps, noux présentons une étude bibliographique dans laquelle sont analysés les travaux qui ont déhà été rélisé dans ce domaine. Ensuite, nous présentons une étude analytique, puis une modélisation mathématique et des méthodes de résolution numérique qui englobent des algorithmes efficaces. Nous proposons une démonstration de la compexité du problème de stockage de conteneurs en considérant différents cas de stockage. Ce problème étant "Np_difficile" peut être difficilement résolu avec le logiciel d'optimisation "ILOG CPLEX". », raison pour laquelle nous proposons un algorithme de banch-and-cut, qui est une méthode de résolution exacte et qui nous a permis de repousser les limites de "ILOG CPLEX". Nous avons aussi proposé des algorithmes métatheuristiques et des hybridations qui procurent des résultats très satisfaisants et qui sont très avantageux en temps de calcul. / AIn this thesis, we trait the container storage problem at port terminal. Initially, we present a state of the art in which the work that have been previously made in this filed are analyzed. After that, we present an analytical study. Thed we propose a mathematical modelling and some methods of resolution including effective algorithms. We propose a demonstration of the complexity of the problem by considering different cases of storage. This problme is "Np_difficult, so not always easy to solve by using the optimization software "ILOG CPLEX”. This is why we propose a branch-and-cut algorithm, wich is an optimal resolution algorithm and wich enables to go beyong the limits of "ILOG CPLEX". We also proposed meta-heuristic algorithms and hybridizations wich provide satisfactory resulys and wich required less calculation times.
|
6 |
Estratégias de resolução para o problema de job-shop flexível / Solution approaches for flexible job-shop scheduling problemWellington Donizeti Previero 16 September 2016 (has links)
Nesta tese apresentamos duas estratégias para resolver o problema de job-shop flexível com o objetivo de minimizar o makespan. A primeira estratégia utiliza um algoritmo branch and cut (B&C) e a segunda abordagens matheuristics. O algoritmo B&C utiliza novas classes de inequações válidas, originalmente formulada para o problema de job-shop e estendida para o problema em questão. Para que as inequações válidas sejam eficientes, o modelo proposto por Birgin et al, (2014) (A milp model for an extended version of the fexible job shop problem. Optimization Letters, Springer, v. 8, n. 4, 1417-1431), é reformulado (MILP-2). A segunda estratégia utiliza as matheuristcs local branching e diversification, refining and tight-refining. Os experimentos computacionais mostraram que a inclusão dos planos de corte melhoram a relaxação do modelo MILP-2 e a qualidade das soluções. O algoritmo B&C reduziu o gap e o número de nós explorados para uma grande quantidade de instâncias. As abordagens matheuristics tiveram um excelente desempenho. Do total de 59 instâncias analisadas, somente em 3 problemas a resolução do modelo MILP-1 obteve melhores resultados do que as abordagens matheuristcs / This thesis proposes two approaches to solve the flexible job-shop scheduling problem to minimize the makespan. The first strategy uses a branch and cut algorithm (B&C) and the second approach is based on matheuristics. The B&C algorithm uses new classes of valid inequalities, originally formulated for job-shop scheduling problems and extended to the problem at hand. The second approach uses the matheuristics local branching and diversification, refining and tight-refining. For all valid inequalities to be effective, the precedence variable based model proposed by Birgin et al, (2014) (A milp model for an extended version of the fexible job shop problem. Optimization Letters, Springer, v. 8, n. 4, 1417-1431), is reformulated (MILP-2). The computational experiments showed that the inclusion of cutting planes tightened the linear programming relaxations and improved the quality of solutions. B&C algorithm reduced the gap value and the number of nodes explored in a large number of instances. The matheuristics approaches had an excellent performance. From 59 instances analized, MILP-1-Gurobi showed better results than matheuristics approaches in only 3 problems
|
7 |
Étude des propriétés polyédrales du problème de conception de réseaux multiproduits, avec coût fixe et capacitéChouman, Mervat January 2003 (has links)
Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.
|
8 |
Models and algorithms for network design problemsPoss, Michael 22 February 2011 (has links)
Dans cette thèse, nous étudions différents modèles, déterministes et stochastiques, pour les problèmes de dimensionnement de réseaux. Nous examinons également le problème du sac-à-dos stochastique ainsi que, plus généralement, les contraintes de capacité en probabilité.
Dans une première partie, nous nous consacrons à des modèles de dimensionnement de réseaux déterministes, possédant de nombreuses contraintes techniques s'approchant de situations réalistes. Nous commençons par étudier deux modèles de réseaux de télécommunications. Le premier considère des réseaux multi-couches et des capacités sur les arcs, tandis que le second étudie des réseaux mono-couche, sans capacité, où les commodités doivent être acheminées sur un nombre K de chemins disjoint de taille au plus L. Nous résolvons ces deux problèmes grâce à un algorithme de ``branch-and-cut' basé sur la décomposition de Benders de formulations linéaires pour ces problèmes. La nouveauté de notre approche se situe principalement dans l'étude empirique de la fréquence optimale de génération de coupes au cours de l'algorithme.
Nous étudions ensuite un problème d'expansion de réseaux de transmission électrique. Notre travail étudie différents modèles et formulations pour le problème, les comparant sur des réseaux brésiliens réels. En particulier, nous montrons que le re-dimensionnement permet des réductions de coût importantes.
Dans une seconde partie, nous examinons des modèles de programmation stochastique. Premièrement, nous prouvons que trois cas particuliers du problème de sac-à-dos avec recours simple peuvent être résolu par des algorithmes de programmation dynamique. Nous reformulons ensuite le problème comme un programme non-linéaire en variables entières et testons un algorithme ``branch-and-cut' basé l'approximation extérieure de la fonction objective.
Cet algorithme est ensuite transformé en un algorithme de ``branch-and-cut-and-price', utilisé pour résoudre un problème de dimensionnement de réseau stochastique avec recours simple.
Finalement, nous montrons comment linéariser des contraintes de capacité en probabilité avec variables binaires lorsque les coefficients sont des variables aléatoires satisfaisant certaines propriétés.
|
9 |
Protein folding and self-avoiding walks polyhedral studies and solutions /Dittel, Agnes. January 2008 (has links)
Zugl.: Darmstadt, Techn. University, Diss., 2008.
|
10 |
Parallel Scheduling in the Cloud Systems : Approximate and Exact Methods / Ordonnancement parallèle des systèmes Cloud : méthodes approchées et exactesHassan Abdeljabbar Hassan, Mohammed Albarra 15 December 2016 (has links)
Cette thèse porte sur la résolution exacte et heuristique de plusieurs problèmes ayant des applications dans le domaine de l'Informatique dématérialisé (cloud computing). L'Informatique dématérialisée est un domaine en plein extension qui consiste à mutualiser les machines/serveurs en définissant des machines virtuelles représentant des fractions des machines/serveurs. Il est nécessaire d'apporter des solutions algorithmiques performantes en termes de temps de calcul et de qualité des solutions. Dans cette thèse, nous nous sommes intéressés dans un premier temps au problème d'ordonnancement sur plusieurs machines (les machines virtuelles) avec contraintes de précédence, c.-à-d., que certaines tâches ne peuvent s'exécuter que si d'autres sont déjà finies. Ces contraintes représentent une subdivision des tâches en sous tâches pouvant s'exécuter sur plusieurs machines virtuelles. Nous avons proposé plusieurs algorithmes génétiques permettant de trouver rapidement une bonne solution réalisable. Nous les avons comparés avec les meilleurs algorithmes génétiques de la littérature et avons défini les types d'instances où les solutions trouvées sont meilleures avec notre algorithme. Dans un deuxième temps, nous avons modélisé ce problème à l'aide de la programmation linéaire en nombres entiers permettant de résoudre à l'optimum les plus petites instances. Nous avons proposé de nouvelles inégalités valides permettant d'améliorer les performances de notre modèle. Nous avons aussi comparé cette modélisation avec plusieurs formulations trouvées dans la littérature. Dans un troisième temps, nous avons analysé de manière approfondie la sous-structure du sous-graphe d'intervalle ne possédant pas de clique de taille donnée. Nous avons étudié le polytope associé à cette sous-structure et nous avons montré que les facettes que nous avons trouvées sont valides pour le problème d'ordonnancement sur plusieurs machines avec contraintes de précédence mais elles le sont aussi pour tout problème d'ordonnancement sur plusieurs machines. Nous avons étendu la modélisation permettant de résoudre le précédent problème afin de résoudre le problème d'ordonnancement sur plusieurs machines avec des contraintes disjonctives entre les tâches, c.-à-d., que certaines tâches ne peuvent s'exécuter en même temps que d'autres. Ces contraintes représentent le partage de ressources critiques ne pouvant pas être utilisées par plusieurs tâches. Nous avons proposé des algorithmes de séparation afin d'insérer de manière dynamique nos facettes dans la résolution du problème puis avons développé un algorithme de type Branch-and-Cut. Nous avons analysé les résultats obtenus afin de déterminer les inégalités les plus intéressantes afin de résoudre ce problème. Enfin dans le dernier chapitre, nous nous sommes intéressés au problème d'ordonnancement d'atelier généralisé ainsi que la version plus classique d'ordonnancement d'atelier (open shop). En effet, le problème d'ordonnancement d'atelier généralisé est aussi un cas particulier du problème d'ordonnancement sur plusieurs machines avec des contraintes disjonctives entre les tâches. Nous avons proposé une formulation à l'aide de la programmation mathématique pour résoudre ces deux problèmes et nous avons proposé plusieurs familles d'inégalités valides permettant d'améliorer les performances de notre algorithme. Nous avons aussi pu utiliser les contraintes définies précédemment afin d'améliorer les performances pour le problème d'ordonnancement d'atelier généralisé. Nous avons fini par tester notre modèle amélioré sur les instances classiques de la littérature pour le problème d'ordonnancement d'atelier. Nous obtenons de bons résultats permettant d'être plus rapide sur certaines instances / The Cloud Computing appears as a strong concept to share costs and resources related to the use of end-users. As a consequence, several related models exist and are widely used (IaaS, PaaS, SaaS. . .). In this context, our research focused on the design of new methodologies and algorithms to optimize performances using the scheduling and combinatorial theories. We were interested in the performance optimization of a Cloud Computing environment where the resources are heterogeneous (operators, machines, processors...) but limited. Several scheduling problems have been addressed in this thesis. Our objective was to build advanced algorithms by taking into account all these additional specificities of such an environment and by ensuring the performance of solutions. Generally, the scheduling function consists in organizing activities in a specific system imposing some rules to respect. The scheduling problems are essential in the management of projects, but also for a wide set of real systems (telecommunication, computer science, transportation, production...). More generally, solving a scheduling problem can be reduced to the organization and the synchronization of a set of activities (jobs or tasks) by exploiting the available capacities (resources). This execution has to respect different technical rules (constraints) and to provide the maximum of effectiveness (according to a set of criteria). Most of these problems belong to the NP-Hard problems class for which the majority of computer scientists do not expect the existence of a polynomial exact algorithm unless P=NP. Thus, the study of these problems is particularly interesting at the scientific level in addition to their high practical relevance. In particular, we aimed to build new efficient combinatorial methods for solving parallel-machine scheduling problems where resources have different speeds and tasks are linked by precedence constraints. In our work we studied two methodological approaches to solve the problem under the consideration : exact and meta-heuristic methods. We studied three scheduling problems, where the problem of task scheduling in cloud environment can be generalized as unrelated parallel machines, and open shop scheduling problem with different constraints. For solving the problem of unrelated parallel machines with precedence constraints, we proposed a novel genetic-based task scheduling algorithms in order to minimize maximum completion time (makespan). These algorithms combined the genetic algorithm approach with different techniques and batching rules such as list scheduling (LS) and earliest completion time (ECT). We reviewed, evaluated and compared the proposed algorithms against one of the well-known genetic algorithms available in the literature, which has been proposed for the task scheduling problem on heterogeneous computing systems. Moreover, this comparison has been extended to an existing greedy search method, and to an exact formulation based on basic integer linear programming. The proposed genetic algorithms show a good performance dominating the evaluated methods in terms of problems' sizes and time complexity for large benchmark sets of instances. We also extended three existing mathematical formulations to derive an exact solution for this problem. These mathematical formulations were validated and compared to each other by extensive computational experiments. Moreover, we proposed an integer linear programming formulations for solving unrelated parallel machine scheduling with precedence/disjunctive constraints, this model based on the intervaland m-clique free graphs with an exponential number of constraints. We developed a Branch-and-Cut algorithm, where the separation problems are based on graph algorithms. [...]
|
Page generated in 0.0765 seconds