• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 41
  • 12
  • 5
  • 5
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 91
  • 13
  • 11
  • 10
  • 9
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

The functional evolution of telomere proteins in Tetrahymena thermophila

Cranert, Stacey January 2014 (has links)
No description available.
12

Effects of grinding media shapes on ball mill performance

Lameck, Niyoshaka Nistlaba Stanley 31 October 2006 (has links)
Student number : 0318567G School of Chemical and Metallurgical Engineering Faculty of Engineering / Comminution is an important process in mineral processing, power plants, cement production and pharmaceutical industries. It is costly and an inefficient process in terms of energy requirements and steel consumption related to grinding media and liners. Spherical grinding media are predominantly used in final stages of ore grinding. The spherical balls change shape through breakage and wear. Though this is universal in milling, its contribution and effect on milling kinetics, load behaviour and mill power is not fully established. One area that is usually ignored is the relationship between media shape and mill power. The objective of this dissertation was to investigate how media shape affects grinding. Ball size distribution inside an industrial mill was analysed in terms of shapes and sizes. Load behaviour, mill power and breakage as affected by media shapes were studied in a pilot laboratory mill. An inductive proximity probe, light emitting diode, phototransistor and video photographs were used to determine the load orientation in terms of toe and shoulder positions. A load beam was used to measure the torque exerted by the charge. The variation in load orientation and mill power with speed among different media shapes was observed. Higher shoulder positions were noted with cylpebs than with worn and spherical balls. The power increased to a maximum with increasing mill speed for all media shapes reaching its peak at different mill speeds for the three shapes studied. Variations of breakage rates with media shapes were found; higher breakage rates were noted with spherical media but the differences narrows with decreasing feed size and increasing material fractional filling U. Considering that worn balls in an industrial mill charge constitute about 15 to 40 percent and that the highest difference in breakage rate observed being nine percent for purely one shape charge; it is very doubtful whether it is worthwhile in attempting to develop techniques for removing worn balls from the mill.
13

Modelling of nanoparticles laden jet from a conveying pipe leakage / Modélisation d'un jet chargé en nanoparticules à partir d'une fuite de canalisation de transport

Le, Hong Duc 04 June 2018 (has links)
Depuis quelques années, les nanomatériaux sont de plus en plus utilisés dans les processus industriels. Afin de protéger la population et l'environnement des possibles conséquences lors de rejets accidentels de ces produits dans l'atmosphère, des analyses de risques ont permis d'identifier des scénarios accidentels dans le cas du transport, de la manipulation et du stockage. Parmi les cas de fuite non intentionnelle dans l'atmosphère libre, la fuite accidentelle sur un convoyeur peut générer un relargage massif de nanoparticules. Afin d’évaluer les conséquences de ce type de scénario accidentel, notre étude s’intéresse à la prédiction des propriétés du nuage de particules dispersées dans l’air, par exemple la concentration en nombre et la distribution des diamètres. La première étape de l’étude consiste à synthétiser les phénomènes physiques des nanoparticules dans l’air afin de choisir les phénomènes physiques les plus pertinants à modéliser. Les phénomènes physiques à modéliser sont la forme complexe des agglomérats, la force de traînée des agglomérats, la fragmentation des agglomérats par le fluide, la collision et l'agglomération des agglomérats. Ensuite, la modélisation des phénomènes physiques est développée dans l'outil CFD Code\_Saturne. Pour chaque phénomène physique, un cas de simulation numérique est réalisé pour vérifier le développement de la modélisation dans l'outil CFD. Une bonne comparaison des résultats CFD avec les résultats de modèle 0D de Scilab et les modèles dans la littérature est obtenue. Egalement dans notre étude, un nouveau modèle de la probabilité de collision des agglomérats est proposé. Ces nouveaux modèles sont validés par les expérimentations numériques. Ensuite, l'outil CFD développé est appliqué dans une simulation d'une fuite de canalisation de transport. La zone proche de la fuite est simulée par Code\_Saturne. Les résultats du Code\_Saturne sont utilisés comme les données entrées pour ADMS, un outil numérique de la dispersion des particules à grande échelle. Les résultats montrent que les particules sont dispersées plus de 1 km par rapport au terme source, ce qui est en accord avec la distance observée. En perspective, l'influence de plusieurs paramètres comme la vitesse du vent, les propriétés des particules comme la distribution de taille ou la concentration en agglomérats pourrait être testé. Une expérimentation de rejet des microparticules est réalisée à l'INERIS pour ensuite pouvoir étudier les rejets des nanoparticules à l'échelle laboratoire. / Since a few years, nanomaterials are more and more used in industrial process. In order to protect the population and the environment from the consequences of an accidental release into the atmosphere, the risk assessment allowed to identify the accidental scenario in transport, manipulation and storage of those products. The accidental leakage of the conveying pipe may lead to a massive release of nanoparticles. In order to evaluate the consequences of this type of accident, our study focuses on the prediction of particles properties dispersed into the air, for example the particle number concentration and the particle diameter distribution. The first step of the study consists in the analyse of physical phenomena related to nanoparticles in order to choose the most predominant physical phenomena to model. The relevant physical phenomena in the present configuration are the agglomerate complex shape, the drag force on agglomerates, the agglomerate breakage by gas, the agglomerate collision and the agglomeration. After that, the modelling of physical phenomena chosen is developed in CFD tool Code\_Saturne. For each physical phenomenon, a simulation test case is realized in order to verify the development in CFD tool. A good agreement between CFD tool Code\_Saturne and 0D tool from Scilab and model in the literature is obtained. Also in the present study, new model for the collision probability of agglomerates is proposed. This new model is validated with the numerical experiment. After that, the numerical tool developed is applied in a simulation of an accidental pipe leakage. The field near the leakage is simulated by Code\_Saturne. The results from Code\_Saturne is used as the input data for ADMS tool, a simulation tool for the particle dispersion in large scale. The results show that the particles are dispersed more than 1 km from the release source, which is in agreement with the distance observed. In perspective, the influences of different parameters as the wind field and the particle properties, on the agglomerate size and number distribution can be tested. An experiment of the microparticle jet is realized at INERIS in order to be able to assess the nanoparticle jet experiment in the laboratory scale.
14

Development of experimental methods for the evaluation of aggregate resistance to polishing, abrasion, and breakage

Mahmoud, Enad Muhib 25 April 2007 (has links)
Aggregate properties influence different aspects of asphalt pavement performance. Aggregate polishing characteristics are directly related to pavement surface frictional properties and thus to skid resistance. Aggregate resistance to degradation (abrasion and breakage) is another important property that influences pavement performance. Aggregate degradation could take place during production due to plant operations and during compaction, leading to change in aggregate characteristics and mix properties. In addition, aggregate resistance to degradation is important in mixes such as Stone Matrix Asphalt (SMA) and Open Graded Friction Course (OGFC) that rely on stone-to-stone contacts among coarse aggregates. Some aggregates in these mixes fracture due to the high stresses at contact points. Many test methods exist for measuring aggregate polishing and degradation, but a critical review of these methods reveals that they suffer from being time consuming, are unable to differentiate between aggregates with distinct resistance to polishing, or unable to differentiate between aggregate resistance to abrasion and breakage. New methodologies are needed to give better assessment of aggregate resistance to polishing, abrasion, and breakage. The thesis presents the development of new methods for measuring aggregate resistance to polishing, abrasion, and breakage. These methods rely on measurements using the Aggregate Imaging System (AIMS) and Micro-Deval. The new method for measuring aggregate resistance to polishing monitors change in aggregate texture as a function of polishing time. As such, it provides the initial texture, rate of polishing, and final texture. The new method for measuring aggregate degradation is capable of distinguishing between breakage and abrasion. In this method, abrasion is defined as the reduction in aggregate angularity, while breakage is defined by fracture of particles. The new methods are shown to be rapid and accurate, and they require reasonable training. Since both AIMS and Micro-Deval are used in the new methods, it was necessary to evaluate the repeatability of these two methods. Measurements using two AIMS units and two Micro-Deval machines were used to assess the variability. There was no statistical difference between the measurements of the two AIMS units or between the measurements of the two Micro-Deval units.
15

Development of experimental methods for the evaluation of aggregate resistance to polishing, abrasion, and breakage

Mahmoud, Enad Muhib 25 April 2007 (has links)
Aggregate properties influence different aspects of asphalt pavement performance. Aggregate polishing characteristics are directly related to pavement surface frictional properties and thus to skid resistance. Aggregate resistance to degradation (abrasion and breakage) is another important property that influences pavement performance. Aggregate degradation could take place during production due to plant operations and during compaction, leading to change in aggregate characteristics and mix properties. In addition, aggregate resistance to degradation is important in mixes such as Stone Matrix Asphalt (SMA) and Open Graded Friction Course (OGFC) that rely on stone-to-stone contacts among coarse aggregates. Some aggregates in these mixes fracture due to the high stresses at contact points. Many test methods exist for measuring aggregate polishing and degradation, but a critical review of these methods reveals that they suffer from being time consuming, are unable to differentiate between aggregates with distinct resistance to polishing, or unable to differentiate between aggregate resistance to abrasion and breakage. New methodologies are needed to give better assessment of aggregate resistance to polishing, abrasion, and breakage. The thesis presents the development of new methods for measuring aggregate resistance to polishing, abrasion, and breakage. These methods rely on measurements using the Aggregate Imaging System (AIMS) and Micro-Deval. The new method for measuring aggregate resistance to polishing monitors change in aggregate texture as a function of polishing time. As such, it provides the initial texture, rate of polishing, and final texture. The new method for measuring aggregate degradation is capable of distinguishing between breakage and abrasion. In this method, abrasion is defined as the reduction in aggregate angularity, while breakage is defined by fracture of particles. The new methods are shown to be rapid and accurate, and they require reasonable training. Since both AIMS and Micro-Deval are used in the new methods, it was necessary to evaluate the repeatability of these two methods. Measurements using two AIMS units and two Micro-Deval machines were used to assess the variability. There was no statistical difference between the measurements of the two AIMS units or between the measurements of the two Micro-Deval units.
16

Numerical simulation of comminution in granular materials with an application to fault gouge evolution

Lang, Richard Anthony 30 September 2004 (has links)
The majority of faults display a layer of crushed wear material ("fault gouge") between the fault blocks, which influences the strength and stability of faults. This thesis describes the results of a numerical model used to investigate the process of comminution in a sheared granular material. The model, based on the Discrete Element Method, simulates a layer of 2-D circular grains subjected to normal stress and sheared at constant velocity. An existing code was modified to allow grains to break when subjected to stress conditions that generate sufficient internal tensile stresses. A suite of five numerical runs was performed using the same initial system of grains with sizes randomly chosen from a pre-defined Gaussian distribution. A range of confining pressures was explored from 4.5 MPa to 27.0 MPa (in case of quartz grains with average diameter of 1 mm). The average effective friction coefficients of the five simulations were relatively unaffected by comminution and displayed a constant value of about 0.26. The amount of breakage was directly related to both the applied confining pressure and logarithm of the displacement along the fault. The particle size distribution evolved during the runs, but it was apparently determined only by the cumulative number of grain breakage events: two runs with the same number of breakage events had identical particle size distributions, even if they deformed to different extents under different stress conditions. These results suggest that the knowledge of both the local displacement and stress state on a fault can be used to infer the local particle size distribution of the gouge.
17

Numerical modeling of soil-pile interaction considering grain breakage in finite deformations / Modélisation numérique de l'interaction sol-pieu en prenant en compte l'écrasement des grains en déformations finies

Berenguer Todo-Bom, Luis André 12 February 2014 (has links)
L’analyse du comportement des pieux est un problème complexe du fait de la diversité des phénomènes qui gouvernent le comportement du sol et en particulier celui se trouvant au voisinage du pieu. Ce dernier dépend particulièrement du procédé d’installation du pieu qui peut parfois engendrer des déformations de très grande amplitude dans le sol entre autre phénomènes. L’objectif de ce travail est de mettre en place un outil de modélisation pour évaluer le comportement des pieux sous chargements axiaux en développant des modèles représentant les phénomènes physiques pertinents et de les intégrer numériquement dans un logiciel aux éléments finis utilisant des algorithmes robustes et efficaces. Pour pouvoir modéliser la phase d’installation statique ou dynamique d’un pieu quelques problématiques doivent être considérées. Premièrement, étant donné que pendant l’installation d’un pieu des déformations finies (non-infinitésimal) ont lieu au niveau de l’interface, une formulation eulérienne avec un taux logarithmique des déformations a été adoptée pour prendre en compte le fait que l’hypothèse des déformations infinitésimales n’est plus valable. En plus, le modèle constitutive doit prendre en compte le comportement physique du sol lorsqu’il est soumis à des déplacements d’une magnitude élevée. Le dernier est constitué, entre autres, par le phénomène de l’écrasement des grains ce qui influence beaucoup le comportement volumique du sol et finalement sa résistance au cisaillement ou en d’autres termes le frottement mobilisé. Ce phénomène a été modélisé en introduisant une variable d’écrouissage supplémentaire au modèle de comportement élastoplastique de l’ECP. Les critères d’admissibilité thermodynamique ont été vérifiés pour le modèle constitutive original ainsi que pour le modèle révisé. Des simulations numériques ont été faites pour les deux types d’installation, monotone et pseudo-dynamique (cyclique) et les résultats ont été analysés en détail. Finalement, la dégradation de la résistance au cisaillement au niveau du fût des pieux est un phénomène typique qui se produit pendant le chargement cyclique des fondations composées par des pieux. Le modèle constitutive pour pouvoir bien reproduire ce phénomène n’est pas simple à définir car le chemin de chargement suivi par l’interface sol-pieu est très dépendant du comportement volumique du sol qui à son tours dépend de l’histoire de chargement et des conditions aux limites du problème. Une étude détaillée de toutes les composantes du comportement du pieu pendant ce type de chargement a été effectuée afin de mettre en évidence l’influence de l’histoire de chargement sur la résistance au cisaillement et l’apparition des phénomènes tels que la fatigue du frottement. / The analysis of pile behavior is a complex problem due to the diversity of the phenomena governing the soil behavior and particularly that of the neighboring soil. The objective of this work was to develop a valid modeling tool to evaluate piles’ behavior under axial loads by developing a pertinent mechanical model supported in a robust finite element program which would successfully reproduce the soil behaviour under extreme monotonic and cyclic shear strain. This is done to allow for the numerical modelling of the installation procedure of pile foundations and continued loading of high amplitude cyclic paths. In order to model the installation phase of a monotonic, jacked or dynamic pile foundation some issues must be addressed. Finite deformations take place whilst the pile is put in place requiring an adjustment in the mechanical formulation of the model at the interface level to take into account that the small deformations (rotations and strain) hypothesis is no longer valid. Moreover, the constitutive model must take into account the physical behaviour of the soil when subjected to high order of magnitude displacements. This includes the phenomenon of grain breakage, also referred to as particle crushing, which greatly influences the volumetric behaviour of soil as thus reflecting of shear stress mobilization. The elastoplastic ECP model has therefore been enhanced by introducing an internal variable taking into account the breakage mechanism. The thermodynamic admissibility criteria are verified for the original and revised constitutive models. Both monotonic and pseudo-dynamic installation procedures were numerically simulated and the results thoroughly analysed. Finally, the cyclic shear resistance degradation at the pile shaft is a commonly occurring phenomenon during continued cyclic loading of pile foundation (friction fatigue). The constitutive modelling of this phenomenon, however, is not a straightforward matter. The stress path followed by the thin layer at the soil-pile interface level is known to be directly related to the volumetric behaviour due to the boundary conditions of the problem. A comprehensive analysis of all the components of the behaviour of soil during this stage was object of study in this work.
18

Saturated Solution Effects on Crystal Breakage Experiments in Stirred Vessels

Gandhi, Devkant 06 August 2011 (has links)
Crystallization is a key unit operation in the fine chemical and pharmaceutical industries, many of which employ batch stirred vessels for crystallization. Although using stirred vessels for crystallization has advantages such as better mixing and faster cooling, one of the disadvantages is that due to the presence of mechanical parts in the vessel such as baffles, impeller etc., crystals break up while stirring and generate unwanted secondary nucleation. This process contributes to a wide crystal size distribution with a smaller than desired mean crystal size. For studying crystal breakage phenomenon, experimentalists choose to use nonsolvents for crystal breakage experiments to isolate breakage from simultaneously occurring phenomena such as Ostwald-ripening, aging and agglomeration. Although performing experiments in non-solvents eliminates other phenomena and helps isolate breakage, the results can not always be correlated to saturated solutions due to density and viscosity differences between the two conditions. In this research, the effects of Ostwald ripening, aging and agglomeration on the crystal size and shape distributions are quantitatively measured. Micro and macro scale experiments were performed in both non-solvents and saturated solutions and the results were compared to determine the effects. Both in situ focused beam reflectance method (FBRM) and off-line analyses were performed to characterize the crystal size distributions. Results from experiments show that there is significant difference between the breakage behavior of crystals in non-solvents and in saturated solutions, mplying significant impacts of Ostwald ripening, aging, agglomeration and dissolution in saturated solutions. Calculations using Zwietering correlation also show that the difference between the viscosities and densities in the two systems may also be a contributing factor to the difference in the breakage profiles. It was also found that growth rates of crystals can differ when they are subjected to stress and strain. In macroscale experiments, dissolution was found to have a significant impact on the crystal size distribution. Abrasion was found to be the dominating fracture mechanism for most systems. Extent of breakage and morphological changes were found to be dependent on stirring rates, suspension density, shape and hardness of crystals and the type of system.
19

Effect of Breakage on Crystal Shape Distribution in a Stirred Vessel

Parker, Katrina Rayanne 07 May 2005 (has links)
Particle technology affects the entire human population. It is involved in the manufacture of agriculture chemicals, asphalt, paint, and pharmaceuticals, just to name a few. The size and shape of the particles play an important role in the manufacturing processes. A change in size or shape can change the product produced. Experiments were run to test the effects of agitation rate, magma density, and residence time on adipic acid and sodium chloride crystals. Experiments were executed in a one-liter, double-jacketed, stirred vessel. Digital images of the broken crystals were taken with a microscope/digital camera combo. ImagePro Plus was used to analyze the size of the broken crystals. The greatest change was seen between the two magma densities. It can be determined that change in size and shape based on the variables does exist. A specific set of variables should be introduced for each process in industry to achieve the desired results.
20

Fibre Length Distribution and Dispersion during the Injection Moulding Process: An experimental study evaluating fibre length attrition and dispersion during processing of long glass fibre reinforced polymer composites in injection moulding including an evaluation of long glass fibre measurement techniques

Gibson, Millan-John January 2018 (has links)
This project evaluates fibre length dispersion and distribution within the injection moulding process of long glass fibre reinforced polypropylene, sponsored by Autodesk Simulation. The primary material used in this investigation was a 15 mm long glass fibre reinforced polypropylene consisting of two fibre content levels, 20 wt. % and 40 wt. %. A review of previous research was compiled in this study to evaluate various glass fibre measurement methods and fibre breakage studies to establish where along the injection moulding process fibre breakage predominantly occurs and which process parameters have the greatest influence on fibre length distribution along the screw. Based on literature findings, a manual fibre length measurement method was developed and applied in this study and benchmarked against existing commercially available automated software programs and found to be more accurate in obtaining a reliable fibre length distribution within a glass fibre reinforced sample. Fibre length measurements from the nozzle confirmed that the majority of fibre breakage had already occurred in the screw. Measurements taken along the screw showed a drastic decrease in weighted average glass fibre length from initial pellet form to the end of the metering zone with sudden transitions to lower weighted average values seen at the beginning of the feeding zone and along the compression zone. Fibre dispersion results from the nozzle and along the screw through the use of a μ-CT scanner showed a complex fibre flow and orientation of fibres with the preservation of fibre clusters being seen all along the injection moulding process but chiefly in the feeding and compression zones of the screw.

Page generated in 0.0412 seconds