Spelling suggestions: "subject:"bridge inspection"" "subject:"cridge inspection""
1 |
Non-Contact Evaluation Methods for Infrastructure Condition AssessmentDorafshan, Sattar 01 December 2018 (has links)
The United States infrastructure, e.g. roads and bridges, are in a critical condition. Inspection, monitoring, and maintenance of these infrastructure in the traditional manner can be expensive, dangerous, time-consuming, and tied to human judgment (the inspector). Non-contact methods can help overcoming these challenges. In this dissertation two aspects of non-contact methods are explored: inspections using unmanned aerial systems (UASs), and conditions assessment using image processing and machine learning techniques. This presents a set of investigations to determine a guideline for remote autonomous bridge inspections.
|
2 |
Utilizing Unmanned Aerial Vehicles (UAVs) for the Estimation of Beam Corrosion of Steel Bridge GirdersPryor, Gabrielle 02 April 2021 (has links)
The transportation infrastructure in the United States is a complex system that is vital to the everyday operations of the country. Bridges are a significant asset of this network, with many of them approaching the end of their service life. Corrosion is a common cause of deterioration which ultimately results to structural deficiency for the aging bridges. The deterioration rate is a multi-aspect factor that makes bridge inspections crucial. However, the current bridge inspections are very costly and potentially unsafe for the involved personnel. To lower costs and increase safety, many state DOT’s and universities have decided to perform research on Unmanned Aerial Vehicles (UAVs), or drones. This thesis explores the implementation of drone technology in bridge inspections and investigates their limits for corrosion detection and estimation. The first part of this thesis summarizes the responses obtained from a questionnaire sent to the personnel from the Massachusetts Department of Transportation (MassDOT). The second and third parts of this thesis summarizes how states have utilized UAVs for bridge inspections, including the selected drones and the attached equipment. The last part presents technologies that can be used to detect and measure corrosion, and how they can be used in conjunction with drones to quantify section loss of steel beams.
|
3 |
Evaluation of Unknown FoundationsFlorkowski, Ronald W. 27 March 2007 (has links)
In recent years, bridge foundations have been in the spotlight throughout the nation. Bridges built over running water are susceptible to erosion or scour around their foundations. The reduction in load capacity to piers and abutments pose a safety risk to highway motorists. It has become necessary for engineers to examine and monitor these "scour critical" bridges. The difficulty arises with subsurface foundations of which very little is known about their construction. Hence, the methods applied to analyzing "Unknown Foundations" have become a necessary topic of research.
This thesis explores a method to determine foundation lengths. Similar to Sonic Echo / Impulse Response, this procedure measures reflected shock waves sent through concrete pilings. The technique is non-destructive in nature and is performed near the surface of the foundation. The test is performed on the side of the exposed piling. Current methods are limited by the fact that the tops of most pilings are inaccessible due to pilecaps or beams. Often times, pilings are embedded in stiff soils, which have a dampening effect on the stress waves. This thesis employs a method of analysis that will overcome such limitations and provide engineers with another tool to determine subsurface foundation lengths.
|
4 |
Use of Photogrammetry Aided Damage Detection for Residual Strength Estimation of Corrosion Damaged Prestressed Concrete Bridge GirdersNeeli, Yeshwanth Sai 27 July 2020 (has links)
Corrosion damage reduces the load-carrying capacity of bridges which poses a threat to passenger safety. The objective of this research was to reduce the resources involved in conventional bridge inspections which are an important tool in the condition assessment of bridges and to help in determining if live load testing is necessary. This research proposes a framework to link semi-automated damage detection on prestressed concrete bridge girders with the estimation of their residual flexural capacity. The framework was implemented on four full-scale corrosion damaged girders from decommissioned bridges in Virginia. 3D point clouds of the girders reconstructed from images using Structure from Motion (SfM) approach were textured with images containing cracks detected at pixel level using a U-Net (Fully Convolutional Network). Spalls were detected by identifying the locations where normals associated with the points in the 3D point cloud deviated from being perpendicular to the reference directions chosen, by an amount greater than a threshold angle. 3D textured mesh models, overlaid with the detected cracks and spalls were used as 3D damage maps to determine reduced cross-sectional areas of prestressing strands to account for the corrosion damage as per the recommendations of Naito, Jones, and Hodgson (2011). Scaling them to real-world dimensions enabled the measurement of any required dimension, eliminating the need for physical contact.
The flexural capacities of a box beam and an I-beam estimated using strain compatibility analysis were validated with the actual capacities at failure sections determined from four destructive tests conducted by Al Rufaydah (2020). Along with the reduction in the cross-sectional areas of strands, limiting the ultimate strain that heavily corroded strands can develop was explored as a possible way to improve the results of the analysis. Strain compatibility analysis was used to estimate the ultimate rupture strain, in the heavily corroded bottommost layer prestressing strands exposed before the box beam was tested. More research is required to associate each level of strand corrosion with an average ultimate strain at which the corroded strands rupture. This framework was found to give satisfactory estimates of the residual strength. Reduction in resources involved in current visual inspection practices and eliminating the need for physical access, make this approach worthwhile to be explored further to improve the output of each step in the proposed framework. / Master of Science / Corrosion damage is a major concern for bridges as it reduces their load carrying capacity. Bridge failures in the past have been attributed to corrosion damage. The risk associated with corrosion damage caused failures increases as the infrastructure ages. Many bridges across the world built forty to fifty years ago are now in a deteriorated condition and need to be repaired and retrofitted. Visual inspections to identify damage or deterioration on a bridge are very important to assess the condition of the bridge and determine the need for repairing or for posting weight restrictions for the vehicles that use the bridge. These inspections require close physical access to the hard-to-reach areas of the bridge for physically measuring the damage which involves many resources in the form of experienced engineers, skilled labor, equipment, time, and money. The safety of the personnel involved in the inspections is also a major concern. Nowadays, a lot of research is being done in using Unmanned Aerial Vehicles (UAVs) like drones for bridge inspections and in using artificial intelligence for the detection of cracks on the images of concrete and steel members.
Girders or beams in a bridge are the primary longitudinal load carrying members. Concrete inherently is weak in tension. To address this problem, High Strength steel reinforcement (called prestressing steel or prestressing strands) in prestressed concrete beams is pre-loaded with a tensile force before the application of any loads so that the regions which will experience tension under the service loads would be subjected to a pre-compression to improve the performance of the beam and delay cracking. Spalls are a type of corrosion damage on concrete members where portions of concrete fall off (section loss) due to corrosion in the steel reinforcement, exposing the reinforcement to the environment which leads to accelerated corrosion causing a loss of cross-sectional area and ultimately, a rupture in the steel. If the process of detecting the damage (cracks, spalls, exposed or severed reinforcement, etc.) is automated, the next logical step that would add great value would be, to quantify the effect of the damage detected on the load carrying capacity of the bridges. Using a quantified estimate of the remaining capacity of a bridge, determined after accounting for the corrosion damage, informed decisions can be made about the measures to be taken. This research proposes a stepwise framework to forge a link between a semi-automated visual inspection and residual capacity evaluation of actual prestressed concrete bridge girders obtained from two bridges that have been removed from service in Virginia due to extensive deterioration.
3D point clouds represent an object as a set of points on its surface in three dimensional space. These point clouds can be constructed either using laser scanning or using Photogrammetry from images of the girders captured with a digital camera. In this research, 3D point clouds are reconstructed from sequences of overlapping images of the girders using an approach called Structure from Motion (SfM) which locates matched pixels present between consecutive images in the 3D space. Crack-like features were automatically detected and highlighted on the images of the girders that were used to build the 3D point clouds using artificial intelligence (Neural Network). The images with cracks highlighted were applied as texture to the surface mesh on the point cloud to transfer the detail, color, and realism present in the images to the 3D model. Spalls were detected on 3D point clouds based on the orientation of the normals associated with the points with respect to the reference directions. Point clouds and textured meshes of the girders were scaled to real-world dimensions facilitating the measurement of any required dimension on the point clouds, eliminating the need for physical contact in condition assessment. Any cracks or spalls that went unidentified in the damage detection were visible on the textured meshes of the girders improving the performance of the approach. 3D textured mesh models of the girders overlaid with the detected cracks and spalls were used as 3D damage maps in residual strength estimation.
Cross-sectional slices were extracted from the dense point clouds at various sections along the length of each girder. The slices were overlaid on the cross-section drawings of the girders, and the prestressing strands affected due to the corrosion damage were identified. They were reduced in cross-sectional area to account for the corrosion damage as per the recommendations of Naito, Jones, and Hodgson (2011) and were used in the calculation of the ultimate moment capacity of the girders using an approach called strain compatibility analysis. Estimated residual capacities were compared to the actual capacities of the girders found from destructive tests conducted by Al Rufaydah (2020). Comparisons are presented for the failure sections in these tests and the results were analyzed to evaluate the effectiveness of this framework. More research is to be done to determine the factors causing rupture in prestressing strands with different degrees of corrosion. This framework was found to give satisfactory estimates of the residual strength. Reduction in resources involved in current visual inspection practices and eliminating the need for physical access, make this approach worthwhile to be explored further to improve the output of each step in the proposed framework.
|
Page generated in 0.1131 seconds