• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 17
  • 6
  • 4
  • 4
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 44
  • 13
  • 7
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Finite element analysis of fracture propagation in two-dimensional elastic brittle solids.

Huang, Shang-Wu January 1972 (has links)
No description available.
22

Toughening of cyanate ester networks with reactive thermoplastic modifiers

Srinivasan, Satyanarayan A. January 1994 (has links)
Cyanate ester or triazine networks are attaining increasing importance as potential candidates for high temperature adhesives and composite matrices. Low toughness is a major drawback with most crosslinked thermosetting materials, including the cyanate ester networks. Considerable attention has been devoted to the aspect of toughening such brittle networks in our laboratories. Reactive functional thermoplastics not only enhance toughness but also impart highly desirable stability to solvent stress cracking without seriously affecting the moderately high modulus. Various aspects of this technology, have earlier been successfully applied to epoxy and bismaleimide systems. Careful control of the heterophase morphological structure is necessary to achieve significant toughening. This thesis has focused on modifications of a specific cyanate ester network system based on Bisphenol-A with thermoplastic modifiers, which were systematically varied with respect to back-bone molecular weight and chemistry. Hydroxyl or cyanato functional Bisphenol-A based amorphous poly(arylene ether)s have been successfully utilized to toughen the cyanate ester networks. Blends of reactive and non-reactive Bisphenol-A based amorphous poly(arylene ether sulfone)s were also demonstrated to be useful tougheners, apparently by allowing phase size control. The use of Bisphenol-A based amorphous polyarylene ether ketones (which are of lower polarity relative to the Bisphenol-A based polyarylene ether sulfones) resulted in larger, well defined morphologies which in turn resulted in tougher networks. It was demonstrated that either hydroxyl or cyanato reactive end-groups could be effectively utilized. Both were superior to non-reactive systems in terms of mechanical performance as well as solvent stability. One of the major drawbacks of this effort was that 3-4 fold improvements in toughness were attained but this was at the expense of the upper use temperature which dropped to a significant extent. Hydroxyl functional phenolphthalein based amorphous poly(arylene ether)s have also been successfully utilized to toughen the cyanate ester networks. This is significant in that toughened multi phase networks were generated without a sacrifice in either the Tg or the moderately high modulus of the unmodified cyanate ester networks. It has been demonstrated that the heterophase morphological structure which strongly influences mechanical performance is in turn influenced by the back-bone chemistry, molecular weight and end-functionality of the thermoplastic modifier. In addition, the kinetics of network formation also significantly influences the microphase separated morphologies. Generation and control of such microphase separated morphologies employing both thermal and microwave radiation has been investigated. An interdisciplinary investigation was undertaken to explore the feasibility of hydroxy functionalized phenolphthalein based poly(arylene ether sulfone) modified cyanate ester networks as potential candidates for high performance adhesive and composite matrix applications. Investigations into composite matrix applications, involved establishing models for the experimentally determined time and temperature dependent kinetics of cure as well as melt rheology. It is expected that these models will consequently complement efforts in establishing an optimized cure protocol for the fabrication of composite panels. Preliminary studies concerning aspects of fiber-matrix interfacial adhesion and the viability of thermoplastic modified cyanate ester networks as a structural adhesive have been conducted. / Ph. D.
23

The fracture of composites of ductile fibres in a brittle matrix

Bowling, J. January 1977 (has links)
No description available.
24

An investigation of core-shell rubber modified vinyl ester resins

Roberts, Karen Narelle, 1972- January 2002 (has links)
Abstract not available
25

Defining a Relationship between the Flexibility of Materials and Other Properties

Osmanson, Allison Theresa 05 1900 (has links)
Brittleness of a polymeric material has a direct relationship with the material's performance and furthermore shares an inverse relationship with that material's flexibility. The concept of flexibility of materials has been understood but merely explained with a hand-waving manner. Thus, it has never been defined by a calculation, thereby lacking the ability to determine a definite quantitative value for this characteristic. Herein, an equation is presented and proven which makes determining the value of flexibility possible. Such an equation could be used to predict a material's flexibility prior to testing it, thus saving money and valuable time for those in research and in industry. Substantiating evidence showing the relationship between flexibility of polymers and their respective mechanical properties is presented. Further relating the known tensile properties of a given polymer to its flexibility is expanded upon by proving its relationship to the linear coefficient of thermal expansion for each polymer. Additionally, determining flexibility for polymers whose chemical structures have been compromised by respective solvents has also been investigated to predict a solvent's impact on a polymer after exposure. Polymers examined through literature include polycarbonate (PC), polystyrene (PS), teflon (PTFE), styrene acrylonitrile (SAN), acrylonitrile butadiene styrene (ABS), poly(ethersulfone) (PES), low density polyethylene (LDPE), polypropylene (PP), poly(methyl methacrylate) (PMMA), and poly(vinylidene fluoride) (PVDF). Further testing and confirmation was made using PC, PS, ABS, LDPE, PP, and PMMA.
26

Stability Analysis of Metals Capturing Brittle and Ductile Fracture through a Phase Field Method and Shear Band Localization

Arriaga e Cunha, Miguel Torre do Vale January 2016 (has links)
Dynamic fracture of metals is a fascinating multiphysics-multiscale problem that often results in brittle and/or ductile fracture of structural components. Additionally, under high strain rates such as impact or blast loads, a failure phenomena known as shear banding may also occur, which is a common precursor to fracture. Both fracture and shear banding are instability processes leading to strong discontinuities and strain localization, respectively. Namely, shear bands are zones of highly localized plastic deformation, while brittle/ductile cracks are material discontinuities due to cleavage and/or void coalescence. Furthermore, while fracture events are mostly driven by triaxial tensile loading, shear bands are driven by shear heating caused by inelastic deformations and high temperature rise. In this work, fracture is modeled through a phase field formulation coupled to a set of equations that describe shear bands. While fracture is governed by a strong length scale that propagates at a fast time scale, shear bands are dominated by a weak length scale and propagate slower. These are two different failure modes with distinct spatial and temporal scales. This thesis is aimed at the development of analytical and numerical methods to determine the onset of both shear band localization and fracture. The main contribution of this thesis is the formulation of analytical criteria, based on the linear perturbation method, for the onset of fracture and shear band instabilities. We first propose a stability framework for shear bands that account for a non-constant Taylor Quinney coefficient. In addition, we apply the linear perturbation method to the phase field formulation of fracture to study the onset of unstable crack growth. The derivations lead to an analytical, energy based criterion for the phase field method in linear elastic and visco-plastic materials. The stability criterion not only recovers the critical stress value reported in the literature for simple elastic cases but also provides a criterion for visco-plastic materials with a general degradation function and fracture induced by cold-work. Finally, we analyze the physical stability of both failure modes and their interaction. The analysis provides insight into the dominant failure mode and can be used as a criterion for mesh refinement. Several numerical results with different geometries and a range of strain rate loadings demonstrate that the stability criterion predicts well the onset of failure instability in dynamic fracture applications. For the example problems considered, if a fracture instability precedes shear banding, a brittle-like failure mode is observed, while if a shear band instability is initiated significantly before fracture, a ductile-like failure mode is expected. In any case, fracture instability is stronger than a shear band instability and if initiated will dominate the response. Another contribution of this thesis is the development of numerical type stability methods based on the discretized model which can be employed within any finite element method. In this approach, a novel methodology to determine the onset of shear band localization is proposed, by casting the instability analysis as a generalized eigenvalue problem with a particular decomposition of the element Jacobian matrix. We show that this approach is attractive, as it is applicable to general rate dependent multidimensional cases and no special simplifying assumptions ought to be made. Furthermore, this technique is also applied to the fully coupled dynamic fracture problem and is shown to agree well with the analytical criteria. Finally, we propose an alternative for identifying the instability point following a generalized stability analysis concept. In this framework, a stability measure is obtained by computing the instantaneous growth rate of the vector tangent to the solution. Such an approach is more appropriate for non-orthogonal problems and is easier to generalize to difficult dynamic fracture problems.
27

Predictive Modeling for Ductile Machining of Brittle Materials

Venkatachalam, Sivaramakrishnan 12 October 2007 (has links)
Brittle materials such as silicon, germanium, glass and ceramics are widely used in semiconductor, optical, micro-electronics and various other fields. Traditionally, grinding, polishing and lapping have been employed to achieve high tolerance in surface texture of silicon wafers in semiconductor applications, lenses for optical instruments etc. The conventional machining processes such as single point turning and milling are not conducive to brittle materials as they produce discontinuous chips owing to brittle failure at the shear plane before any tangible plastic flow occurs. In order to improve surface finish on machined brittle materials, ductile regime machining is being extensively studied lately. The process of machining brittle materials where the material is removed by plastic flow, thus leaving a crack free surface is known as ductile-regime machining. Ductile machining of brittle materials can produce surfaces of very high quality comparable with processes such as polishing, lapping etc. The objective of this project is to develop a comprehensive predictive model for ductile machining of brittle materials. The model would predict the critical undeformed chip thickness required to achieve ductile-regime machining. The input to the model includes tool geometry, workpiece material properties and machining process parameters. The fact that the scale of ductile regime machining is very small leads to a number of factors assuming significance which would otherwise be neglected. The effects of tool edge radius, grain size, grain boundaries, crystal orientation etc. are studied so as to make better predictions of forces and hence the critical undeformed chip thickness. The model is validated using a series of experiments with varying materials and cutting conditions. This research would aid in predicting forces and undeformed chip thickness values for micro-machining brittle materials given their material properties and process conditions. The output could be used to machine brittle materials without fracture and hence preserve their surface texture quality. The need for resorting to experimental trial and error is greatly reduced as the critical parameter, namely undeformed chip thickness, is predicted using this approach. This can in turn pave way for brittle materials to be utilized in a variety of applications.
28

The effect of polymer materials on the fracture characteristics of high performance concrete (HPC)

Yahya, Mohmed Alkilani January 2015 (has links)
Compared with most construction materials, concrete is considered as a brittle material, and its brittleness increases with the compressive strength. For super-high-strength concrete, failure can be sudden, explosive and disastrous. Also the tensile strength is not proportionally increased. Therefore, it is necessary to carry out research on the brittleness of concrete in order to establish parameters for assessing the brittleness, find ways to improve the brittleness and tensile strength, and eventually design and manufacture concrete materials with high strength and low brittleness. In this study, strengthening and toughening effects of polymer materials on the high performance concrete (HPC) were investigated. The HPC was manufactured using ordinary Class 52.5 N Portland cement, silica fume and superplasticizer. The adopted polymers included the styrene-butadiene-rubber (SBR) latex, polyvinylidene chloride (PVDC), linear low density polyethylene (LLDPE) and high density polyethylene (HDPE) with contents of 1.5%, 3% and 5% in weight of cement content. The measured material and fracture properties included compressive and tensile strengths, modulus of rupture, Young's modulus, fracture energy, fracture toughness and brittleness. The test results at 28 days indicate that the addition of 1.5% and 3% SBR, PVDC, LLDPE and HDPE into the HPC could largely improve the compressive strength by up to 15.7%, while the addition of 5% SBR, LLDPE and HDPE did not show any enhancement except for 5% PVDC which increased the compressive strength by 10.9%. The tensile strength was considerably increased for all dosages of polymers, with the maximum increases of 72.7% and 83.2% for 3% SBR and 1.5% LLDPE, respectively. The fracture energy were also enhanced by adding 1.5% SBR and all dosages of LLDPE, with a maximum increase of 24.3%, while there were no indications of enhancement for other dosages of polymers. The modulus of rupture, fracture toughness and Young's modulus were not improved for lower dosages of polymers but slightly decreased for higher dosages. The brittleness decreased monotonically with increasing amount of LLDPE, but it increased with increasing amounts of SBR, PVDC and HDPE.
29

Variations in mineral abundance within a single horizontal well path in the Woodford Shale, Arkoma Basin, Oklahoma

Wehner, Tyrel David January 1900 (has links)
Master of Science / Department of Geology / Matthew W. Totten / The Woodford Shale (Oklahoma, U.S.A.) is a prolific unconventional hydrocarbon resource. The Woodford has been shown to be heterogeneous in many geochemical, mineralogical, and rock mechanic properties across the state of Oklahoma, which presents a challenge to successful exploitation of this resource (Caldwell, 2014; Turner et al., 2015; Wiley, 2015; Zhang et al., 2017). Most prior studies of the Woodford Shale report properties from a single sample collected from a vertical well, which reports these values as a single point source on a distribution map. Studies using outcrop localities report lateral variations in several rock properties of the Woodford, but are limited to the short distances an outcrop provides (Turner et al., 2015). The main focus of this research is to determine whether rock properties important to the productivity of the Woodford Shale vary across a lateral well bore within the Woodford shale. Measurements of chemical and mineralogical compositions were performed on rock cutting samples from a single horizontal well path of the Carleigh 6H-32 across approximately one mile. The mineral makeup was determined by use of X-ray diffraction (XRD) and elemental concentrations were determined by hand-held X-ray fluorescence (HHXRF). What was found is that the Upper and Middle Woodford Shale are relatively homogeneous laterally. The lack of variation means that it’s possible to determine from which subgroup samples may have been taken. The geochemical data were used to calculate a mineral-based brittleness index (Wang and Gale, 2009), which was compared to the measured frack gradient across perforations of the Carleigh 6H-32 well. In addition, the total organic matter content (TOC) was approximated in the same samples using loss on ignition (LOI) methods. The calculated mineralogy within samples assigned to the Middle Woodford show some variability throughout the horizontal well, which leads to an associated variation in mineral brittleness index when using the Wang and Gale (2009) formula. The mineral based brittleness index correlates with observed fracture gradient during well completion. This suggests that the tendency to fracture is also variable along the well path, which should be considered during design of the well completion.
30

Fractures et instabilités de fluides viscoélastiques en cellule de Hele-Shaw / fracture and instabilities of viscoelastic fluids in a Hele-Shaw cell

Foyart, Guillaume 21 November 2013 (has links)
Les mécanismes de fracture dans les matériaux solides ont été activement étudiés. Dans les fluides complexes, les fractures ont déjà été observées et sont jusqu'à présent beaucoup moins bien documentées. Nous avons choisi d'analyser les phénomènes de fracturation dans une classe particulière de fluides complexes : les gels transitoires auto-assemblés. Ces gels, viscoélastiques, possèdent la propriété de s'écouler aux temps longs et de se comporter de manière élastique aux temps courts. Nous avons axé cette thèse autour de trois systèmes modèles : des microémulsions connectées, des solutions de micelles géantes, ainsi qu'un système « hybride » constitué de solutions de micelles de morphologie contrôlable et connectées. Tous ces systèmes, qui sont à l'équilibre thermodynamique, se comportent comme des fluides de Maxwell, néanmoins leurs microstructures sont très différentes. Les microémulsions connectées sont formées de gouttelettes d'huile, stabilisées par des tensioactifs, dispersées dans de l'eau et connectées par des polymères téléchéliques. Les solutions de micelles géantes sont des agrégats allongés et semi-flexibles, enchevêtrés, résultant de l'auto-assemblage de tensioactifs en solution dans l'eau. Enfin, le système de micelles pontées est constitué d'agrégats de tensioactifs dont on peut contrôler la morphologie (sphères -> cylindres -> vers) et qui sont pontés par un polymère téléchélique. Ces trois systèmes ont été étudiés dans une géométrie confinée : une cellule de Hele-Shaw radiale. Elle est constituée de deux plaques de verre séparées par des espaceurs de taille contrôlée (500 µm) et percée d'un trou en son centre permettant l'injection de fluides.Nos expériences consistent en l'injection, à débit contrôlé, d'une huile faiblement visqueuse dans le gel. Le contraste de viscosité entre l'huile injectée et le gel étant important, l'interface huile/gel n'est pas stable. En fonction du débit d'injection d'huile, nous avons observé différents phénomènes. A bas débits d'injection, une instabilité visco-capillaire se développe : l'interface huile/gel se déforme et forme des motifs appelés doigts visqueux. Cette instabilité de Saffman-Taylor est bien connue pour des fluides visqueux. A plus haut débit en revanche, un autre type d'instabilité se développe, d'origine élasto-capillaire : les fractures.Nous avons quantifié les différences entre les deux types d'instabilité. En utilisant des techniques complémentaires, visualisation directe à l'aide d'une caméra rapide et vélocimétrie par corrélation d'images, nous avons montré qu'il existe une discontinuité entre la vitesse de l'interface huile/gel et la vitesse du gel à la pointe de fracture. Cette discontinuité est inexistante dans le cas de la digitation. Nous avons montré que la structure du gel influe sur la transition entre ces deux types d'instabilité. En étudiant les champs de déplacement des microémulsions connectées, nous avons caractérisé les déplacements du gel autour de la pointe, notamment la manière dont l'amplitude des déplacements du gel décroit quand on s'éloigne de la pointe de fracture. Quand la structure du gel peut se réorganiser sous écoulement, nous avons mesuré un signal de biréfringence associé à ces réorganisations. En étudiant ce signal, qui apparait à la pointe d'une fracture, nous avons pu réaliser une première mesure macroscopique de la taille d'une « zone de process ». Nous avons montré que cette zone est d'autant plus grande que la vitesse de la fracture est petite.Lors d'expériences consistant à injecter des solutions de micelles géantes dans elles-mêmes, nous avons découvert l'existence d'une instabilité d'écoulement inconnue jusqu'à aujourd'hui. Elle se caractérise par la perte transitoire de la symétrie radiale de l'écoulement et l'apparition de «branches » biréfringentes se propageant à de très hautes vitesses dans le gel et qui, au final, déforment l'interface air/gel. / Fracture mechanisms in solid materials have been extensively studied. Although cracks are also commonly seen in soft solids, the fracture process is still not very well understood for these materials. In this thesis we choose to study fracture on a particular class of materials: complex fluids. We will focus on one particular family of complex fluids which are self-assembled transient gels. These viscoelastic gels have the property to flow at long timescale while behaving as an elastic solid at short timescales. We have investigated three model systems: a bridged micro emulsion and a entangled solution of wormlike micelle, and a “hybrid” system made of bridged micelles of tunable morphology. These systems are at thermodynamic equilibrium and behave as Maxwell fluids but they differ in microscopic structures. Bridged micro emulsions are made of surfactant-stabilzed oil droplet dispersed in water and bridged by telechelic polymers. Wormlike micelles are long semi flexible aggregates made from the self-assembly of surfactant in a water solution. Lastly, bridged micelles are made of surfactant aggregates of controllable shape (sphere -> cylinder -> worm) in water bridged by telechelic polymers. We choose to study these different systems in a confined geometry: a radial Hele-Shaw cell. The Hele-Shaw cell is made of two glass plates separated by spacers of controllable thickness. A hole is pierced in the center of the cell for injecting the fluids. The experiments consist in the injection at a controlled rate of low viscosity oil inside the highly viscous gel. Because of the high viscosity contrast between the two fluids, the oil/gel interface is unstable. Depending of the injection rate, we observed different instabilities. At lowest rates, an instability of visco-capillary origins appears and the oil/gel interface is deformed leading to a viscous fingering pattern. This instability called Saffman Taylor instability is widely known and has been extensively studied for Newtonian fluids. At highest rates another instability patterns arise of elasto capillary origin where the patterns are vastly different from the previous one and are made of cracks propagating through the gel. We have quantified the difference between the two types of instability. By combining direct visualization using high speed imaging and digital image correlation techniques we have characterized the displacement field of the gel around the crack tip, and in particular how its amplitude decays away from the tip. For bridged microemulsion, we have also evidenced the existence of a velocity discontinuity between the crack velocity and the velocity of the gel near the crack tip whereas no discontinuity occurs in the case of viscous fingering. Using bridged micelles of tunable morphologies we have also shown that the transition between the two instabilities is controlled by the viscoelasticity of the gel. Finally, for gel that can reorient under flow we have measured a birefringence signal associated to these reorganization. By studying this signal at the crack tip we were able to perform a measurement of the size of the “process zone” which could be considered as the first macroscopic quantitative analysis of the ductility of a crack in complex fluids. During complementary experiments which consist of the injection of wormlike micelles in themselves we have reported a new kind of flow instability. This instability is characterized by the transient loss of the radial symmetry during flow and by the apparitions of typical “branches” which propagates at very high speed through the sample and finally distort the air/gel interface.

Page generated in 0.0554 seconds