Spelling suggestions: "subject:"bromélia epífitas"" "subject:"romélia epífitas""
1 |
Competência para a expressão da fotossíntese CAM em plantas de Guzmania monostachia (Bromeliaceae) em diferentes fases ontogenéticas / Competence for CAM photosynthesis expression in different ontogenétic stages of plants of Guzmania monostachia (Bromeliaceae)Hamachi, Leonardo 06 November 2013 (has links)
A Guzmania monostachia é uma espécie de bromélia heteroblástica, ou seja, na fase juvenil, ela apresenta a forma atmosférica e na fase adulta, ela adquire uma estrutura chamada de tanque, que pode armazenar água e nutrientes em momentos de seca esporádica. Ela também é reconhecida por ser C3-CAM facultativa, podendo ser induzida ao CAM através de estímulos ambientais como o a escassez d\'água. Estudos com outras espécies competentes para a expressão do CAM, há relatos de que tecidos jovens expressariam preferencialmente a fotossíntese C3 e passariam a expressar o CAM à medida que se tornassem maduros. No Laboratório de Fisiologia do Desenvolvimento Vegetal a indução do CAM em plantas adultas da espécie G. monostachia por déficit hídrico foi estudada e pôde-se constatar que essa bromélia possui folhas com regiões funcionais distintas: a porção basal seria responsável pela absorção de água e nutrientes e a porção apical encarregada de realizar, principalmente, a fotossíntese. Contudo, ainda não se possuía informação sobre como a ontogenia e as mudanças morfológicas estariam influenciando a competência para a expressão do CAM em folhas inteiras e nas diferentes porções foliares de G. monostachia. A fim de se caracterizar o CAM nesta espécie ao longo da ontogenia, foram selecionadas plantas em 3 fases ontogenéticas (Atmosférica, Tanque-1 e Tanque-2) e das fases Tanque-1 e 2 foram separados grupos de folhas representando 3 estágios de desenvolvimento (F1 - as 7 mais internas da roseta, F2- as 7 folhas seguintes da roseta e F3 - as 7 folhas localizadas mais na base da roseta). As plantas foram submetidas a 7 dias de déficit hídrico por meio da suspensão de rega. Outra coleta de material vegetal foi realizada com plantas Tanque-2 separando-se as folhas em grupos representando os mesmos 3 estágios de desenvolvimento utilizados no experimental anterior e dividindo-as em porções basal e apical. Medidas morfométricas foram feitas para caracterizar cada fase ontogenética. O teor de água dos tecidos das folhas foi determinado e o CAM foi detectado através do ensaio enzimático da PEPC, da MDH e da quantificação dos ácidos orgânicos (ácido cítrico e málico). As plantas Tanque-2 apresentaram mais que o dobro da capacidade de estocagem de água comparativamente às plantas Tanque-1. As plantas atmosféricas sofreram as maiores perdas de água em sua folhas (aproximadamente 50%); já as plantas com tanque tiveram decréscimos mais discretos no teor hídrico (em torno de 15%). Plantas de todas as fases ontogenéticas acumularam significativamente ácido málico durante a noite, evidenciando que, independente da ontogenia, as plantas foram competentes para expressar o CAM. De maneira semelhante, tanto as folhas mais jovens quanto as mais maduras exibiram acúmulos significativos de ácido málico, indicando que elas foram capazes de expressar o CAM nos 3 estágios de desenvolvimento escolhidos para este estudo. Portanto, no conjunto dos experimentais realizados, sugere-se que o fator mais importante para a expressão do CAM em plantas de G. monostachia seja o teor de água dos tecidos foliares e não a ontogenia. Plantas atmosféricas apresentaram a maior perda de água (aproximadamente 50%) concomitantemente à expressão do CAM. Já as regiões apicais dos grupos de folhas F1 das plantas Tanque-2 exibiram um decréscimo de 7% com acúmulo noturno de ácido málico e os grupos F2 e F3 perderam 12% da água de seus tecidos, resultando na inibição do CAM. Há indícios que o transporte de água nas plantas com tanque sob estresse hídrico ocorra das folhas mais maduras para as folhas mais jovens. Aparentemente, plantas jovens atmosféricas de G. monostachia possuem a capacidade de manter seu metabolismo mais ativo mesmo em condições que resultem em uma baixa quantidade de água nos tecidos foliares, indicando um certo grau de tolerância à seca. Ao contrário, nas plantas com tanque, essa capacidade parece não ser tão acentuada, sugerindo que esta fase esteja mais relacionada com estratégias de evitação à seca / Guzmania monostachia is a species of heteroblastic bromeliad, in other words, whereas in the juvenile phase, it assumes the atmospheric form, in the adult, it acquires a structure called a tank, by which water and nutrients can be stored in moments of sporadic drought. It is also recognized through being C3-CAM facultative, thus inducible to CAM through environmental stimuli, such as the lack of water. In the young plants of other species capable of CAM expression, there are reports of preferential C3 photosynthesis expression in young tissues, leading to CAM expression on reaching maturity. In the Laboratory of Plant Development Physiology, studies were made of CAM induction in adult plants of the species G. monostachia during the lack of water at times of drought. It was noted that this bromeliad possessed leaves with distinct functional regions: whereas the basal portion was responsible for the absorption of both water and nutrients, the apical was mainly responsible for photosynthesis. Nonetheless, there was no available information on how ontogeny and morphological changes could influence competence for CAM expression throughout the whole leaf, as well as in the different parts. In order to characterize CAM in this species throughout ontogeny, selection was concentrated on plants in the three ontogenetic phases (Atmospheric, Tank-1 and Tank-2), as well as in the Tank-1 and Tank-2 phases by separating groups of leaves representing the three stages of development in the rosette, viz., Stage1 - the seven inner-most leaves, Stage2 - the next seven, and Stage3 - the seven located more at the base. By suspending irrigation, all the plants were submitted to 7 days without water, whereupon further material was collected from Tank-2 plants. The leaves thus obtained were first divided into groups representing the same three developmental phases as used in the preceding experiment, and then separated into basal and apical portions. Morphometric measurement was applied to the characterization of each ontogenetic phase. Tissue water content in the leaves was defined, and CAM detected through PEPC enzymatic assaying, MDH, and organic acid (citric and malic) quantification. Tank-2 plants presented more than double the capacity to store water, when compared to Tank-1 plants. Whereas atmospheric plants underwent the greatest leaf-water loss (around 50%), the loss was less in those with tanks (around 15%). Significant nocturnal malic acid accumulation in plants in all the ontogenetic phases, placed in evidence plant competency for CAM expression, independent of the stage of development. Likewise, significant malic acid accumulation in both young leaves and more mature ones indicated their capacity for CAM expression in the three stages of development chosen for the present study. Thus, in the experiments carried out, it can be presumed that the most important factor for CAM expression in G. monostachia plants is leaf-tissue water content, and not ontogeny. Atmospheric plants presented the highest water loss (around 50%), which was concomitant with CAM expression. On the other hand, in the apical regions of Tank-2 plants, there was a drop of 7% in water content with nocturnal malic acid accumulation in stage-1 leaves, and a loss of 12% in tissue water in those in stage 2 and 3, with the consequential CAM inhibition. There is every indication that water-transport in tank plants undergoing water-stress occurs from more mature leaves to those younger. Apparently the more active metabolism in young G. monostachia atmospheric plants, even under conditions inducing low leaf-tissue water content, indicates a certain degree of drought tolerance. On the contrary, although this capacity in tank plants appears to be less accentuated, the tank phase is apparently more related to strategies for avoiding the effects of drought
|
2 |
Competência para a expressão da fotossíntese CAM em plantas de Guzmania monostachia (Bromeliaceae) em diferentes fases ontogenéticas / Competence for CAM photosynthesis expression in different ontogenétic stages of plants of Guzmania monostachia (Bromeliaceae)Leonardo Hamachi 06 November 2013 (has links)
A Guzmania monostachia é uma espécie de bromélia heteroblástica, ou seja, na fase juvenil, ela apresenta a forma atmosférica e na fase adulta, ela adquire uma estrutura chamada de tanque, que pode armazenar água e nutrientes em momentos de seca esporádica. Ela também é reconhecida por ser C3-CAM facultativa, podendo ser induzida ao CAM através de estímulos ambientais como o a escassez d\'água. Estudos com outras espécies competentes para a expressão do CAM, há relatos de que tecidos jovens expressariam preferencialmente a fotossíntese C3 e passariam a expressar o CAM à medida que se tornassem maduros. No Laboratório de Fisiologia do Desenvolvimento Vegetal a indução do CAM em plantas adultas da espécie G. monostachia por déficit hídrico foi estudada e pôde-se constatar que essa bromélia possui folhas com regiões funcionais distintas: a porção basal seria responsável pela absorção de água e nutrientes e a porção apical encarregada de realizar, principalmente, a fotossíntese. Contudo, ainda não se possuía informação sobre como a ontogenia e as mudanças morfológicas estariam influenciando a competência para a expressão do CAM em folhas inteiras e nas diferentes porções foliares de G. monostachia. A fim de se caracterizar o CAM nesta espécie ao longo da ontogenia, foram selecionadas plantas em 3 fases ontogenéticas (Atmosférica, Tanque-1 e Tanque-2) e das fases Tanque-1 e 2 foram separados grupos de folhas representando 3 estágios de desenvolvimento (F1 - as 7 mais internas da roseta, F2- as 7 folhas seguintes da roseta e F3 - as 7 folhas localizadas mais na base da roseta). As plantas foram submetidas a 7 dias de déficit hídrico por meio da suspensão de rega. Outra coleta de material vegetal foi realizada com plantas Tanque-2 separando-se as folhas em grupos representando os mesmos 3 estágios de desenvolvimento utilizados no experimental anterior e dividindo-as em porções basal e apical. Medidas morfométricas foram feitas para caracterizar cada fase ontogenética. O teor de água dos tecidos das folhas foi determinado e o CAM foi detectado através do ensaio enzimático da PEPC, da MDH e da quantificação dos ácidos orgânicos (ácido cítrico e málico). As plantas Tanque-2 apresentaram mais que o dobro da capacidade de estocagem de água comparativamente às plantas Tanque-1. As plantas atmosféricas sofreram as maiores perdas de água em sua folhas (aproximadamente 50%); já as plantas com tanque tiveram decréscimos mais discretos no teor hídrico (em torno de 15%). Plantas de todas as fases ontogenéticas acumularam significativamente ácido málico durante a noite, evidenciando que, independente da ontogenia, as plantas foram competentes para expressar o CAM. De maneira semelhante, tanto as folhas mais jovens quanto as mais maduras exibiram acúmulos significativos de ácido málico, indicando que elas foram capazes de expressar o CAM nos 3 estágios de desenvolvimento escolhidos para este estudo. Portanto, no conjunto dos experimentais realizados, sugere-se que o fator mais importante para a expressão do CAM em plantas de G. monostachia seja o teor de água dos tecidos foliares e não a ontogenia. Plantas atmosféricas apresentaram a maior perda de água (aproximadamente 50%) concomitantemente à expressão do CAM. Já as regiões apicais dos grupos de folhas F1 das plantas Tanque-2 exibiram um decréscimo de 7% com acúmulo noturno de ácido málico e os grupos F2 e F3 perderam 12% da água de seus tecidos, resultando na inibição do CAM. Há indícios que o transporte de água nas plantas com tanque sob estresse hídrico ocorra das folhas mais maduras para as folhas mais jovens. Aparentemente, plantas jovens atmosféricas de G. monostachia possuem a capacidade de manter seu metabolismo mais ativo mesmo em condições que resultem em uma baixa quantidade de água nos tecidos foliares, indicando um certo grau de tolerância à seca. Ao contrário, nas plantas com tanque, essa capacidade parece não ser tão acentuada, sugerindo que esta fase esteja mais relacionada com estratégias de evitação à seca / Guzmania monostachia is a species of heteroblastic bromeliad, in other words, whereas in the juvenile phase, it assumes the atmospheric form, in the adult, it acquires a structure called a tank, by which water and nutrients can be stored in moments of sporadic drought. It is also recognized through being C3-CAM facultative, thus inducible to CAM through environmental stimuli, such as the lack of water. In the young plants of other species capable of CAM expression, there are reports of preferential C3 photosynthesis expression in young tissues, leading to CAM expression on reaching maturity. In the Laboratory of Plant Development Physiology, studies were made of CAM induction in adult plants of the species G. monostachia during the lack of water at times of drought. It was noted that this bromeliad possessed leaves with distinct functional regions: whereas the basal portion was responsible for the absorption of both water and nutrients, the apical was mainly responsible for photosynthesis. Nonetheless, there was no available information on how ontogeny and morphological changes could influence competence for CAM expression throughout the whole leaf, as well as in the different parts. In order to characterize CAM in this species throughout ontogeny, selection was concentrated on plants in the three ontogenetic phases (Atmospheric, Tank-1 and Tank-2), as well as in the Tank-1 and Tank-2 phases by separating groups of leaves representing the three stages of development in the rosette, viz., Stage1 - the seven inner-most leaves, Stage2 - the next seven, and Stage3 - the seven located more at the base. By suspending irrigation, all the plants were submitted to 7 days without water, whereupon further material was collected from Tank-2 plants. The leaves thus obtained were first divided into groups representing the same three developmental phases as used in the preceding experiment, and then separated into basal and apical portions. Morphometric measurement was applied to the characterization of each ontogenetic phase. Tissue water content in the leaves was defined, and CAM detected through PEPC enzymatic assaying, MDH, and organic acid (citric and malic) quantification. Tank-2 plants presented more than double the capacity to store water, when compared to Tank-1 plants. Whereas atmospheric plants underwent the greatest leaf-water loss (around 50%), the loss was less in those with tanks (around 15%). Significant nocturnal malic acid accumulation in plants in all the ontogenetic phases, placed in evidence plant competency for CAM expression, independent of the stage of development. Likewise, significant malic acid accumulation in both young leaves and more mature ones indicated their capacity for CAM expression in the three stages of development chosen for the present study. Thus, in the experiments carried out, it can be presumed that the most important factor for CAM expression in G. monostachia plants is leaf-tissue water content, and not ontogeny. Atmospheric plants presented the highest water loss (around 50%), which was concomitant with CAM expression. On the other hand, in the apical regions of Tank-2 plants, there was a drop of 7% in water content with nocturnal malic acid accumulation in stage-1 leaves, and a loss of 12% in tissue water in those in stage 2 and 3, with the consequential CAM inhibition. There is every indication that water-transport in tank plants undergoing water-stress occurs from more mature leaves to those younger. Apparently the more active metabolism in young G. monostachia atmospheric plants, even under conditions inducing low leaf-tissue water content, indicates a certain degree of drought tolerance. On the contrary, although this capacity in tank plants appears to be less accentuated, the tank phase is apparently more related to strategies for avoiding the effects of drought
|
3 |
Assimilação do nitrogênio em folhas de Vriesea gigantea (Bromeliaceae) durante a transição ontogenética do hábito atmosférico para o epífito com tanque / Nitrogen assimilation in leaves of Vriesea gigantea (Bromeliaceae) during the ontogenetic transition from atmospheric to tank epiphyte habitTakahashi, Cassia Ayumi 10 March 2014 (has links)
A fase de desenvolvimento é um importante fator a ser considerado em pesquisas sobre nutrição de bromélias. O hábito de vida dessas plantas pode mudar de: atmosférica (com folhas sem formar um tanque) para o com tanque ao longo do seu desenvolvimento. Algumas pesquisas mostraram que o conteúdo de nitrogênio foliar ou capacidade fotossintética são significantemente influenciados pela fase de desenvolvimento, porém não há registros de que a nutrição e o metabolismo do nitrogênio diferem entre bromélias jovens ou adultas. O objetivo principal deste projeto foi verificar se existem diferenças na dinâmica do metabolismo do nitrogênio (absorção, transporte e assimilação), decorrente da utilização de fontes de distintas (amônio, nitrato ou ureia), entre bromélias nas fases atmosférica ou adultas com tanque desenvolvido. Para tanto, plantas de Vriesea gigantea foram regadas com uma solução nutritiva que conteve 5mM de N total, disponível nas formas: 15NH4+ ou 15NO3- ou 15N-ureia. Foram feitas coletas temporais das raízes e de duas diferentes porções da folha (ápice e base) das bromélias jovens e de três regiões foliares (ápice, mediana e base) das folhas das bromélias adultas com tanque. Todas as amostras vegetais foram utilizadas na avaliação das atividades da: urease, redutase do nitrato, sintetase da glutamina e desidrogenase do glutamato; e da quantificação da abundância isotópica do 15N. Segundo os resultados, o nitrato foi considerado a fonte de nitrogênio absorvida em concentrações menores quando comparada com a ureia e o amônio pelas bromélias de ambas as fases de desenvolvimento. Entretanto, as bromélias atmosféricas mostraram ser capazes de capturar essa fonte inorgânica de nitrogênio mais eficientemente do que as bromélias com tanque, uma vez que o nitrato foi absorvido, transportado e assimilado rapidamente na 1ª hora após o fornecimento dessa fonte. Já para as bromélias adultas, a absorção do nitrato foi lenta e ocorreu, principalmente, no final do experimento (12ª e 24ª hora). O amônio e a ureia foram as fontes absorvidas em maiores concentrações tanto pelas bromélias jovens quanto pelas adultas. Entretanto, as bromélias atmosféricas foram capazes de captar e metabolizar maiores concentrações de nitrogênio proveniente do amônio, enquanto que as da fase adulta com tanque foram mais aptas a absorver e assimilar maiores concentrações de ureia em seus tecidos. A bromélia V. gigantea pode mudar a sua morfologia e fisiologia ao longo de seu desenvolvimento, tornando-se apta a captar as fontes de nitrogênio que, talvez, sejam mais abundantes em cada fase de seu desenvolvimento. A água da chuva que contém, principalmente, fontes inorgânicas de nitrogênio diluídas, pode ser o principal meio por onde as bromélias jovens captam o nitrogênio. Ao desenvolverem um tanque, as bromélias podem mudar a sua fisiologia, capturando preferencialmente fontes de nitrogênio provenientes de matéria orgânica decomposta que se acumula no interior da cisterna. As raízes das bromélias atmosféricas também mostraram cumprir um papel fundamental na nutrição dessas plantas durante a fase juvenil, pois aumentaram a capacidade de absorção e assimilação de fontes de nitrogênio. Quando as bromélias iniciam o desenvolvimento de um tanque, as bases das folhas passaram a assumir a função do sistema radicular, enquanto que as raízes, talvez, começassem a diminuir sua capacidade de captar os nutrientes do meio ambiente. Os resultados bioquímicos demonstraram que existe uma forte sincronização de todas as etapas do metabolismo do nitrogênio (absorção, transporte e assimilação) envolvendo diferentes partes do corpo das bromélias (raízes, porções foliares da base, mediana ou ápice) de ambas as fases de desenvolvimento, sugerindo que nos tecidos vegetais dessas plantas, existe uma fina regulação de todos os processos fisiológicos e metabólicos que compreendem o metabolismo do nitrogênio. Essa regulação controlada seria necessária para que as bromélias atmosféricas ou com tanque desenvolvido consigam absorver, transportar e assimilar as fontes de nitrogênio rapidamente e com grande eficiência. Para finalizar, o novo termo \"bromélia epífita jovem sem tanque\" foi sugerido para se referir à bromélia V. gigantea na fase juvenil ao invés de \"bromélia epífita atmosférica\". As raízes dessa bromélia jovem demonstraram ter um papel fundamental nos processos de absorção e assimilação das fontes de nitrogênio, uma característica que geralmente não é atribuída para as raízes das bromélias com o hábito de vida atmosférico / The stages of ontogenetic development of bromeliad can be an important feature to be considered in the physiology studies because the young plants can be classified as atmospheric bromeliads, while the adult plants have a special structure formed by leaves called tank. Some studies showed that some physiological characteristics can be influenced by the stages of ontogenetic development in bromeliads as photosynthetic taxes or the total nitrogen (N) content in leaves. However, there are no records that nutrition and nitrogen metabolism differ between young and adult epiphytic bromeliads. The objective of this project was to verify the existence of differences in the dynamics of nitrogen metabolism (absorption, transportation and assimilation) arising from the use of distinct nitrogen sources (NH4+, NO3- or urea) in epiphytic bromeliad Vriesea gigantea with different stages of ontogenetic development (atmospheric or tank). A nutrient solution, consisting 5mM of total N, was offered to bromeliads. Three different forms of N sources were used: NH4+, NO3- or urea, enriched with 15N isotopes. Three distinct portions of leaf (apex, middle and base) of adult tank bromeliad and two different regions of leaf (apex and base) and roots of young bromeliads were harvested in six different times. All samples were used in enzymatic assays of urease, nitrate reductase, glutamate sinthetase and glutamate dehydrogenase and in the 15N isotope quantification. According to the results, the nitrate was considered the nitrogen source absorbed at lower concentration by young and adult bromeliads. The atmospheric bromeliads were able to capture nitrate more efficiently than the tank plants, since this inorganic nitrogen source was absorbed and assimilated quickly in the 1st hour of the experimental time while the tank bromeliads absorbed nitrate slowly at the end of the experiment (12th and 24th hour). Ammonium and urea sources were absorbed in higher concentrations by atmospheric and tank bromeliads. The young bromeliads were able to absorb and assimilate higher concentrations of nitrogen from ammonium, while tank bromeliad absorbed and assimilated higher concentrations of urea. In each development stage, the epiphytic bromeliad V. gigantea can absorb and assimilate the nitrogen sources which are more available in the environment. The atmospheric bromeliads get to absorb diluted nutrients as inorganic nitrogen sources mainly from rainwater. After the tank structure developed in the rosette, the morphology and/or physiology features changes in the adult bromeliads. The tank bromeliads get to absorb mainly organic nitrogen sources from decomposed organic matter which accumulates inside the tank. The roots of atmospheric bromeliads also showed an important role in the nutrition of the young plants since the atmospheric bromeliads get to improve the nitrogen sources uptake and nitrogen assimilation. When the bromeliads developed a tank, the bases of the leaves might assume the absorption function, whereas the roots, perhaps, might decrease its capacity to capture the nutrients from the environment. The biochemical results showed that there is a strong synchronization of all stages of nitrogen metabolism (uptake, transport and assimilation) involving different body parts of bromeliads (roots, leaf portions of the base, middle or apex) of both development stages, suggesting that there might have a thin regulation of all physiological and metabolic processes of nitrogen metabolism in the bromeliad\'s tissues. This controlled regulation might be important to the atmospheric or tank bromeliads are able to absorb, allocate and assimilate nitrogen sources quickly and with great efficiency. Finally, the terminology “atmospheric epiphytic bromeliad” might not be appropriated to refer to young plants since their roots showed an important role in the absorption and assimilation of nitrogen sources. This feature is not usually attributed to the roots of atmospheric bromeliads. Then, the new terminology “young epiphytic bromeliad without tank” was suggested to refer the bromeliad V. gigantea in the juvenile phase
|
4 |
Assimilação do nitrogênio em folhas de Vriesea gigantea (Bromeliaceae) durante a transição ontogenética do hábito atmosférico para o epífito com tanque / Nitrogen assimilation in leaves of Vriesea gigantea (Bromeliaceae) during the ontogenetic transition from atmospheric to tank epiphyte habitCassia Ayumi Takahashi 10 March 2014 (has links)
A fase de desenvolvimento é um importante fator a ser considerado em pesquisas sobre nutrição de bromélias. O hábito de vida dessas plantas pode mudar de: atmosférica (com folhas sem formar um tanque) para o com tanque ao longo do seu desenvolvimento. Algumas pesquisas mostraram que o conteúdo de nitrogênio foliar ou capacidade fotossintética são significantemente influenciados pela fase de desenvolvimento, porém não há registros de que a nutrição e o metabolismo do nitrogênio diferem entre bromélias jovens ou adultas. O objetivo principal deste projeto foi verificar se existem diferenças na dinâmica do metabolismo do nitrogênio (absorção, transporte e assimilação), decorrente da utilização de fontes de distintas (amônio, nitrato ou ureia), entre bromélias nas fases atmosférica ou adultas com tanque desenvolvido. Para tanto, plantas de Vriesea gigantea foram regadas com uma solução nutritiva que conteve 5mM de N total, disponível nas formas: 15NH4+ ou 15NO3- ou 15N-ureia. Foram feitas coletas temporais das raízes e de duas diferentes porções da folha (ápice e base) das bromélias jovens e de três regiões foliares (ápice, mediana e base) das folhas das bromélias adultas com tanque. Todas as amostras vegetais foram utilizadas na avaliação das atividades da: urease, redutase do nitrato, sintetase da glutamina e desidrogenase do glutamato; e da quantificação da abundância isotópica do 15N. Segundo os resultados, o nitrato foi considerado a fonte de nitrogênio absorvida em concentrações menores quando comparada com a ureia e o amônio pelas bromélias de ambas as fases de desenvolvimento. Entretanto, as bromélias atmosféricas mostraram ser capazes de capturar essa fonte inorgânica de nitrogênio mais eficientemente do que as bromélias com tanque, uma vez que o nitrato foi absorvido, transportado e assimilado rapidamente na 1ª hora após o fornecimento dessa fonte. Já para as bromélias adultas, a absorção do nitrato foi lenta e ocorreu, principalmente, no final do experimento (12ª e 24ª hora). O amônio e a ureia foram as fontes absorvidas em maiores concentrações tanto pelas bromélias jovens quanto pelas adultas. Entretanto, as bromélias atmosféricas foram capazes de captar e metabolizar maiores concentrações de nitrogênio proveniente do amônio, enquanto que as da fase adulta com tanque foram mais aptas a absorver e assimilar maiores concentrações de ureia em seus tecidos. A bromélia V. gigantea pode mudar a sua morfologia e fisiologia ao longo de seu desenvolvimento, tornando-se apta a captar as fontes de nitrogênio que, talvez, sejam mais abundantes em cada fase de seu desenvolvimento. A água da chuva que contém, principalmente, fontes inorgânicas de nitrogênio diluídas, pode ser o principal meio por onde as bromélias jovens captam o nitrogênio. Ao desenvolverem um tanque, as bromélias podem mudar a sua fisiologia, capturando preferencialmente fontes de nitrogênio provenientes de matéria orgânica decomposta que se acumula no interior da cisterna. As raízes das bromélias atmosféricas também mostraram cumprir um papel fundamental na nutrição dessas plantas durante a fase juvenil, pois aumentaram a capacidade de absorção e assimilação de fontes de nitrogênio. Quando as bromélias iniciam o desenvolvimento de um tanque, as bases das folhas passaram a assumir a função do sistema radicular, enquanto que as raízes, talvez, começassem a diminuir sua capacidade de captar os nutrientes do meio ambiente. Os resultados bioquímicos demonstraram que existe uma forte sincronização de todas as etapas do metabolismo do nitrogênio (absorção, transporte e assimilação) envolvendo diferentes partes do corpo das bromélias (raízes, porções foliares da base, mediana ou ápice) de ambas as fases de desenvolvimento, sugerindo que nos tecidos vegetais dessas plantas, existe uma fina regulação de todos os processos fisiológicos e metabólicos que compreendem o metabolismo do nitrogênio. Essa regulação controlada seria necessária para que as bromélias atmosféricas ou com tanque desenvolvido consigam absorver, transportar e assimilar as fontes de nitrogênio rapidamente e com grande eficiência. Para finalizar, o novo termo \"bromélia epífita jovem sem tanque\" foi sugerido para se referir à bromélia V. gigantea na fase juvenil ao invés de \"bromélia epífita atmosférica\". As raízes dessa bromélia jovem demonstraram ter um papel fundamental nos processos de absorção e assimilação das fontes de nitrogênio, uma característica que geralmente não é atribuída para as raízes das bromélias com o hábito de vida atmosférico / The stages of ontogenetic development of bromeliad can be an important feature to be considered in the physiology studies because the young plants can be classified as atmospheric bromeliads, while the adult plants have a special structure formed by leaves called tank. Some studies showed that some physiological characteristics can be influenced by the stages of ontogenetic development in bromeliads as photosynthetic taxes or the total nitrogen (N) content in leaves. However, there are no records that nutrition and nitrogen metabolism differ between young and adult epiphytic bromeliads. The objective of this project was to verify the existence of differences in the dynamics of nitrogen metabolism (absorption, transportation and assimilation) arising from the use of distinct nitrogen sources (NH4+, NO3- or urea) in epiphytic bromeliad Vriesea gigantea with different stages of ontogenetic development (atmospheric or tank). A nutrient solution, consisting 5mM of total N, was offered to bromeliads. Three different forms of N sources were used: NH4+, NO3- or urea, enriched with 15N isotopes. Three distinct portions of leaf (apex, middle and base) of adult tank bromeliad and two different regions of leaf (apex and base) and roots of young bromeliads were harvested in six different times. All samples were used in enzymatic assays of urease, nitrate reductase, glutamate sinthetase and glutamate dehydrogenase and in the 15N isotope quantification. According to the results, the nitrate was considered the nitrogen source absorbed at lower concentration by young and adult bromeliads. The atmospheric bromeliads were able to capture nitrate more efficiently than the tank plants, since this inorganic nitrogen source was absorbed and assimilated quickly in the 1st hour of the experimental time while the tank bromeliads absorbed nitrate slowly at the end of the experiment (12th and 24th hour). Ammonium and urea sources were absorbed in higher concentrations by atmospheric and tank bromeliads. The young bromeliads were able to absorb and assimilate higher concentrations of nitrogen from ammonium, while tank bromeliad absorbed and assimilated higher concentrations of urea. In each development stage, the epiphytic bromeliad V. gigantea can absorb and assimilate the nitrogen sources which are more available in the environment. The atmospheric bromeliads get to absorb diluted nutrients as inorganic nitrogen sources mainly from rainwater. After the tank structure developed in the rosette, the morphology and/or physiology features changes in the adult bromeliads. The tank bromeliads get to absorb mainly organic nitrogen sources from decomposed organic matter which accumulates inside the tank. The roots of atmospheric bromeliads also showed an important role in the nutrition of the young plants since the atmospheric bromeliads get to improve the nitrogen sources uptake and nitrogen assimilation. When the bromeliads developed a tank, the bases of the leaves might assume the absorption function, whereas the roots, perhaps, might decrease its capacity to capture the nutrients from the environment. The biochemical results showed that there is a strong synchronization of all stages of nitrogen metabolism (uptake, transport and assimilation) involving different body parts of bromeliads (roots, leaf portions of the base, middle or apex) of both development stages, suggesting that there might have a thin regulation of all physiological and metabolic processes of nitrogen metabolism in the bromeliad\'s tissues. This controlled regulation might be important to the atmospheric or tank bromeliads are able to absorb, allocate and assimilate nitrogen sources quickly and with great efficiency. Finally, the terminology “atmospheric epiphytic bromeliad” might not be appropriated to refer to young plants since their roots showed an important role in the absorption and assimilation of nitrogen sources. This feature is not usually attributed to the roots of atmospheric bromeliads. Then, the new terminology “young epiphytic bromeliad without tank” was suggested to refer the bromeliad V. gigantea in the juvenile phase
|
5 |
Bactérias diazotróficas em Guzmania monostachia (Bromeliaceae): identificação, sinalização e colonização dos tecidos foliares / Diazotrophic bacteria in Guzmania monostachia (Bromeliaceae): identification, signaling and leaf tissue colonizationKleingesinds, Carolina Krebs 30 June 2016 (has links)
As bromélias habitam os mais diferentes ambientes sendo que muitas são encontradas como epífitas. Essas últimas estão sujeitas a condições de disponibilidade de água e nutrientes com intermitência. Elas conseguem sobreviver a essas circunstâncias por serem dotadas de diversas adaptações morfológicas e fisiológicas. A bromélia tanque Guzmania monostachia tem sido bastante estudada por possuir uma grande plasticidade fotossintética, porém, pouco é conhecido a respeito de outras possíveis adaptações como a interação com micro-organismos. Sendo assim, o presente trabalho isolou bactérias fixadoras de nitrogênio (diazotróficas) tanto da parte externa (epifíticas) quanto da parte interna (endofíticas) de diferentes porções (ápice, mediana e base) de folhas coletadas tanto no ambiente natural quanto na casa de vegetação. As bactérias foram selecionadas por meio do ensaio de redução de acetileno (ARA) e também pelo uso de quatro diferentes meios de cultura que não contém fonte de nitrogênio reduzido. As linhagens isoladas foram identificadas por meio do gene 16sRNA. Dois isolados Pseudomonas sp. e Burkholderia sp. foram escolhidos para serem marcados com um gene de fluorescência verde (GFP) e foram então inoculados (separadamente) em plantas de G. monostachia cultivadas em casa de vegetação. A colonização dos tecidos foliares foi monitorada com auxílio de um microscópio confocal. Além disso, foram estimadas as densidades populacionais epifíticas e endofíticas em diferentes grupos foliares (jovens e intermediários) e as folhas do grupo intermediário por serem maiores e totalmente expandidas foram divididas em porções (apical, mediana e basal). Também foram pesquisadas as seguintes moléculas descritas como importantes na interação entre planta e micro-organismo: óxido nítrico (NO), ácido salicílico (SA), etileno (ET) e ácido-indol-3-acético (IAA). Como resultados, a maioria das linhagens bacterianas foram classificadas como pertencentes ao grupo Proteobacteria, mas também foram encontrados isolados gram positivos pertencentes aos grupos Actinobacteria e Firmicutes. As bactérias endofíticas foram isoladas somente da porção basal foliar (tanto das folhas originadas do meio ambiente quanto das folhas originadas da casa de vegetação). Cabe ressaltar que após a inoculação de ambas bactérias marcadas com GFP, foi observado elas no interior dos tricomas foliares (estruturas presentes principalmente na base foliar). Após 20 horas da inoculação, ambas bactérias já foram visualizadas no interior da epiderme das folhas. Após 5 dias as bactérias foram se espalhando para regiões mais distantes do tricoma e também foram observadas no parênquima. Após 10 dias a bactéria Pseudomonas sp. foi encontrada nas paredes dos vasos condutores. Foram re-isoladas bactérias epifíticas e endofíticas da mediana e da base foliar, mas não da porção apical. Após 10 dias as bactérias foram isoladas como endofíticas somente da base. Essa porção não apresentou diferenças nas populações epifíticas e endofíticas. O NO aumentou nas folhas jovens e na base das intermediárias em um curto período de tempo após a inoculação. Aparentemente, ambas as bactérias não dispararam a via do SA. De acordo com os resultados aqui presentes, ambas as bactérias não pareceram ser prejudiciais à G. monostachia. Além disso, o presente trabalho mostra fortes evidencias de que as bactérias entram nos tecidos foliares por meio dos tricomas na base foliar e permanecem nessa porção, que é precisamente a mais importante para absorção de nutrientes / Bromeliads inhabit different environments and many are found as epiphytes. These plants are often subjected to periods of water and nutrient shortage. For their survival, epiphytic bromeliads are endowed with different morphological and physiological adaptations. Guzmania monostachia is a tank-bromeliad that has been extensively studied because of its great photosynthetic plasticity. However, little is known about other possible survival adaptations, such as beneficial interactions with microorganisms. Here, we isolated nitrogen fixing (diazotrophc) bacteria from both the outside (epiphytic) and the inside (endophytic) of different leaf portions (apex, middle and base), collected in natural environment and in greenhouse-cultivated plants. The bacteria were selected using the acetylene reduction assay (ARA) and four different media that do not contain reduced nitrogen source. The strains were identified by 16S rRNA. Two isolates, Pseudomonas sp. and Burkholderia sp. has been chosen to be tagged with green fluorescent protein (GFP) and then inoculated in G. monostachia plants cultivated in greenhouse. The colonization of the leaf tissues was monitored with the aid of confocal microscopy and also we estimate the external and internal bacterial population densities in different leaf groups (younger and expanded) and portions (apex, middle and base). In addition, we studied some important molecules in plant-microbe interactions: nitric oxide (NO), salicylic acid (SA), ethylene (ET) and indol-3-acetic acid (IAA). As a result, most of the isolated strains belong to the Proteobacteria group, but gram positive strains were also found belonging to the Firmicutes and Actinobacteria group. The endophytic bacteria were isolated only from the basal portion (both from leaves of natural environment and from leaves of greenhouse cultivated plants). Interestingly, after the inoculation of both bacteria tagged with GFP they were visualized entering by trichomes present mainly in the basal portion. Twenty hours after the inoculation, the bacteria were visualized inside the epidermis of the leaves. After five days, the bacteria were detected in the parenchyma and, ten days after the inoculation Pseudomonas sp. was found on the vessels walls. It was possible to re-isolate epiphytic and endophytic bacteria from the base and middle portions, but not from the apex. After 10 days the endophytic bacteria were found only in the base. The base did not show differences between epiphytic and endophytic populations. NO increased in a short time after the inoculation in the younger leaves and in the basal portion of intermediate leaves. Apparently, the SA pathway was not triggered by any of the bacteria used. According to these results, the bacteria tested do not seem to be harmful to the plant. Furthermore, we strongly suggest that they enter through the trichomes on the leaf base and remain in this portion, which is precisely the most important for the absorption of nutrients
|
6 |
Caracterização da capacidade de indução ao CAM em plantas de Vriesea gigantea (Bromeliaceae) sob déficit hídrico. / Characterization of the capacity to induce CAM in plants of Vriesea gigantea (Bromeliaceae) under water deficitGobara, Bruno Nobuya Katayama 26 August 2015 (has links)
Embora a água seja o componente mais abundante na natureza, ela é o fator limitante mais comum para o desenvolvimento das plantas. O estresse hídrico é um dos principais fatores abióticos que afeta os organismos vivos, incluindo as plantas epífitas. Esse sinal ambiental atua fortemente e seletivamente sobre a sobrevivência dessas plantas. Algumas espécies vegetais possuem a capacidade de alterar seu metabolismo fotossintético, sendo induzidas ao metabolismo ácido das crassuláceas (CAM) em resposta a escassez d\'água. Vriesea gigantea é uma bromélia C3 tanque-epífita que pode estar sujeita a variações ambientais, como a sazonalidade hídrica. A expressão facultativa do CAM pode ser de extrema importância para essa bromélia lidar com a restrição hídrica sazonal. O CAM é uma adaptação caracterizada principalmente pela fixação do carbono atmosférico durante a noite por meio da enzima fosfoenolpiruvato carboxilase (PEPC). Em decorrência do fechamento estomático na maior parte do dia, a eficiência no uso da água das plantas CAM é maior do que a das plantas que realizam as fotossínteses C3 ou C4. O CAM pode ser expresso em diferentes intensidades o que levou à caracterização de diversos tipos de CAM, como o C3-CAM facultativo. Estudos sobre o metabolismo fotossintético com Vriesea gigantea são raros na literatura. Apesar de V. gigantea ser considerada uma planta C3 na literatura, resultados preliminares obtidos em nosso laboratório, utilizando folhas destacadas, sugeriram que essa espécie seria CAM-\"cycling\" quando bem hidratada e sob déficit hídrico passaria a expressar o CAM-\"idling\" na porção apical das folhas. Portanto, tendo em vista essa aparente contradição, nos propusemos a fazer um estudo mais aprofundado sobre o comportamento fotossintético de V. gigantea . Para tanto, plantas dessa espécie (± 4 anos de idade) foram submetidas ao déficit hídrico por 7, 14 ou 21 dias por meio da suspensão de rega no tanque. Após o tratamento, as folhas dessa bromélia foram separadas em 3 grupos: jovens (G1) ( 1º ao 7º nó), intemediárias (G2) (8º ao 14º nó) e maduras (G3) (15º ao 21º nó). Os parâmetros utilizados para a análise da expressão do CAM foram as atividades das enzimas fosfoenolpiruvato carboxilase (PEPC) e malato desidrogenase (MDH), juntamente com o acúmulo noturno de ácidos orgânicos (malato e citrato) nos diferentes grupos e porções foliares (ápice, mediana e base). Para melhor compreensão do metabolismo fotossintético, foi realizado um ciclo complementar de 24 horas, detalhando melhor a dinâmica do malato e citrato nas folhas de V. gigantea no 21º dia de deficiência hídrica. Para conhecer o \"status\" hídrico das plantas, foram determinados o potencial hídrico e o teor relativo de água (TRA) por meio das análises de massa fresca, massa túrgida e massa seca. Ao final do período de 21 dias de suspensão de rega, as plantas alcançaram o nível mais baixo de potencial hídrico o qual se estabilizou, indicando que V. gigantea possivelmente estava sob estresse hídrico. A queda do TRA já tinha sido observada, no entanto, a partir do 14º dia de déficit hídrico, sendo mais intenso no 21º dia. Notou-se uma tendência de remobilização hídrica entre os tecidos foliares dessa planta, principalmente de folhas maduras (G3) para folhas jovens (G1). Após 21 dias de deficiência hídrica, as atividades enzimáticas de PEPC e MDH apresentaram um comportamento que não seguiu um padrão de expressão característico do CAM, ou seja, uma alta atividade noturna de PEPC e MDH em situação de deficiência hídrica. A princípio, encontrou-se um acúmulo noturno de ácidos orgânicos (malato e citrato) no grupos foliares G1, G2 e G3 ao longo dos 21 dias de tratamento. Entretanto, foi observado no ciclo de 24 horas de acúmulo de ácidos orgânicos, que essa variação de malato e citrato encontrada inicialmente, era decorrente de pequenas flutuações e que estas não estariam relacionadas ao CAM. Assim, sugere-se que V. gigantea não utilize o CAM como estratégia de evitação à seca. Conjuntamente, observou-se um acúmulo de açúcares solúveis ao longo do ciclo de 24 horas em todas as porções foliares, indicando que Vriesea gigantea apresenta, talvez, mecanismos eficientes de abaixamento de seu potencial hídrico, acumulando compostos que possuem função osmoreguladora (glicose e frutose, por exemplo). Essa estratégia pode ser considerada como um mecanismo importante que ajudaria a tolerar o período de estresse hídrico de 21 dias de suspensão de rega no tanque / Although water is the most abundant component in nature, it is also the most common limiting factor for plant growth. Drought stress is a major abiotic factor that affect living organisms, including epiphytes. This environmental signal acts strongly and selectively on the survival of plants. Some plant species have the ability to change their photosynthetic metabolism, being induced to crassulacean acid metabolism (CAM) in response to water shortage. Vriesea gigantean is a C3 epiphyte tank bromeliad that may be subject to environmental variations such as the water seasonality. The facultative expression of CAM can be extremely important for this bromeliad deal with seasonal water restriction. CAM is an adaptation characterized mainly by the fixation of atmospheric carbon overnight by phosphoenolpyruvate carboxylase (PEPC), to power photosynthesis during daytime with closed stomata. As a result, the water use efficiency of CAM plants is higher than that of the plants that perform photosynthesis C3 or C4. CAM can be expressed in different intensities leading to the characterization of various types of CAM, such as C3-CAM facultative. Studies on the photosynthetic metabolism with Vriesea gigantean are rare in the literature. Although V. gigantean is considered a C3 plant, preliminary results obtained in our Laboratory using detached leaves suggested that this species would become CAM-cycling when well hydrated, while under water deficit it would express CAM-idling in the apical portion of the leaves. Therefore, in light of this apparent contradiction, we set out to further study the photosynthetic behavior of V. gigantean. Plants of this species (± 4 years) were submitted to drought for 7, 14 or 21 days by suspending watering in the tank. After the treatment, the leaves of this bromeliad were separated into 3 groups: young (G1) (1st to 7th node), intermediate (G2) (8th to 14th node) and mature (G3) (15th to 21th node). The parameters used for the analysis of CAM expression were the activities of the enzymes phosphoenolpyruvate carboxylase (PEPC) and malate dehydrogenase (MDH), along with nighttime accumulation of organic acids (malate and citrate) in the different groups and leaf portions (apex, middle and base). To better understand the photosynthetic metabolism, there was a complementary 24-hour cycle, further detailing the dynamics of malate and citrate in V. gigantean leaves on the 21st day of water stress. To evaluate the water status of the plants, water potential and relative water content (TRA) were determined, the latter through the fresh, turgid and dry weight analysis. At the end of 21 days of watering suspension, the plants reached the lowest level of water potential, indicating that the plants were under drought stress. The drop in the TRA had already been noted, however, from the 14th day of water stress, intensifying in the 21th day. A tendency of water remobilization among the leaf tissues of the plant, especially from mature leaves (G3) to young leaves (G1) was observed. After 21 days of drought, the enzymatic activities of PEPC and MDH showed a behavior that did not follow a characteristic pattern of expression of CAM, i.e. a high nocturnal activity of PEPC and MDH in water stress situation. Initially it was found a nighttime accumulation of organic acids (citrate and malate) on the leaf groups G1, G2 and G3 during the 21 days of treatment. However, it was observed in a 24-hour quantification of organic acids that the variation of malate and citrate concentrations found initially was due to small fluctuations probably unrelated to CAM. Thus, it is suggested that V. gigantean can not undergo CAM as an avoidance strategy to drought. We observed an accumulation of soluble sugars over the 24 hour cycle in all leaf portions, indicating that Vriesea gigantean has perhaps efficient mechanisms to lower its water potential by accumulating compounds with osmorregulator function (glucose and fructose, for example). This strategy can be seen as an important mechanism that helps tolerate water stress during 21 days of watering suspension in the tank
|
7 |
Bactérias diazotróficas em Guzmania monostachia (Bromeliaceae): identificação, sinalização e colonização dos tecidos foliares / Diazotrophic bacteria in Guzmania monostachia (Bromeliaceae): identification, signaling and leaf tissue colonizationCarolina Krebs Kleingesinds 30 June 2016 (has links)
As bromélias habitam os mais diferentes ambientes sendo que muitas são encontradas como epífitas. Essas últimas estão sujeitas a condições de disponibilidade de água e nutrientes com intermitência. Elas conseguem sobreviver a essas circunstâncias por serem dotadas de diversas adaptações morfológicas e fisiológicas. A bromélia tanque Guzmania monostachia tem sido bastante estudada por possuir uma grande plasticidade fotossintética, porém, pouco é conhecido a respeito de outras possíveis adaptações como a interação com micro-organismos. Sendo assim, o presente trabalho isolou bactérias fixadoras de nitrogênio (diazotróficas) tanto da parte externa (epifíticas) quanto da parte interna (endofíticas) de diferentes porções (ápice, mediana e base) de folhas coletadas tanto no ambiente natural quanto na casa de vegetação. As bactérias foram selecionadas por meio do ensaio de redução de acetileno (ARA) e também pelo uso de quatro diferentes meios de cultura que não contém fonte de nitrogênio reduzido. As linhagens isoladas foram identificadas por meio do gene 16sRNA. Dois isolados Pseudomonas sp. e Burkholderia sp. foram escolhidos para serem marcados com um gene de fluorescência verde (GFP) e foram então inoculados (separadamente) em plantas de G. monostachia cultivadas em casa de vegetação. A colonização dos tecidos foliares foi monitorada com auxílio de um microscópio confocal. Além disso, foram estimadas as densidades populacionais epifíticas e endofíticas em diferentes grupos foliares (jovens e intermediários) e as folhas do grupo intermediário por serem maiores e totalmente expandidas foram divididas em porções (apical, mediana e basal). Também foram pesquisadas as seguintes moléculas descritas como importantes na interação entre planta e micro-organismo: óxido nítrico (NO), ácido salicílico (SA), etileno (ET) e ácido-indol-3-acético (IAA). Como resultados, a maioria das linhagens bacterianas foram classificadas como pertencentes ao grupo Proteobacteria, mas também foram encontrados isolados gram positivos pertencentes aos grupos Actinobacteria e Firmicutes. As bactérias endofíticas foram isoladas somente da porção basal foliar (tanto das folhas originadas do meio ambiente quanto das folhas originadas da casa de vegetação). Cabe ressaltar que após a inoculação de ambas bactérias marcadas com GFP, foi observado elas no interior dos tricomas foliares (estruturas presentes principalmente na base foliar). Após 20 horas da inoculação, ambas bactérias já foram visualizadas no interior da epiderme das folhas. Após 5 dias as bactérias foram se espalhando para regiões mais distantes do tricoma e também foram observadas no parênquima. Após 10 dias a bactéria Pseudomonas sp. foi encontrada nas paredes dos vasos condutores. Foram re-isoladas bactérias epifíticas e endofíticas da mediana e da base foliar, mas não da porção apical. Após 10 dias as bactérias foram isoladas como endofíticas somente da base. Essa porção não apresentou diferenças nas populações epifíticas e endofíticas. O NO aumentou nas folhas jovens e na base das intermediárias em um curto período de tempo após a inoculação. Aparentemente, ambas as bactérias não dispararam a via do SA. De acordo com os resultados aqui presentes, ambas as bactérias não pareceram ser prejudiciais à G. monostachia. Além disso, o presente trabalho mostra fortes evidencias de que as bactérias entram nos tecidos foliares por meio dos tricomas na base foliar e permanecem nessa porção, que é precisamente a mais importante para absorção de nutrientes / Bromeliads inhabit different environments and many are found as epiphytes. These plants are often subjected to periods of water and nutrient shortage. For their survival, epiphytic bromeliads are endowed with different morphological and physiological adaptations. Guzmania monostachia is a tank-bromeliad that has been extensively studied because of its great photosynthetic plasticity. However, little is known about other possible survival adaptations, such as beneficial interactions with microorganisms. Here, we isolated nitrogen fixing (diazotrophc) bacteria from both the outside (epiphytic) and the inside (endophytic) of different leaf portions (apex, middle and base), collected in natural environment and in greenhouse-cultivated plants. The bacteria were selected using the acetylene reduction assay (ARA) and four different media that do not contain reduced nitrogen source. The strains were identified by 16S rRNA. Two isolates, Pseudomonas sp. and Burkholderia sp. has been chosen to be tagged with green fluorescent protein (GFP) and then inoculated in G. monostachia plants cultivated in greenhouse. The colonization of the leaf tissues was monitored with the aid of confocal microscopy and also we estimate the external and internal bacterial population densities in different leaf groups (younger and expanded) and portions (apex, middle and base). In addition, we studied some important molecules in plant-microbe interactions: nitric oxide (NO), salicylic acid (SA), ethylene (ET) and indol-3-acetic acid (IAA). As a result, most of the isolated strains belong to the Proteobacteria group, but gram positive strains were also found belonging to the Firmicutes and Actinobacteria group. The endophytic bacteria were isolated only from the basal portion (both from leaves of natural environment and from leaves of greenhouse cultivated plants). Interestingly, after the inoculation of both bacteria tagged with GFP they were visualized entering by trichomes present mainly in the basal portion. Twenty hours after the inoculation, the bacteria were visualized inside the epidermis of the leaves. After five days, the bacteria were detected in the parenchyma and, ten days after the inoculation Pseudomonas sp. was found on the vessels walls. It was possible to re-isolate epiphytic and endophytic bacteria from the base and middle portions, but not from the apex. After 10 days the endophytic bacteria were found only in the base. The base did not show differences between epiphytic and endophytic populations. NO increased in a short time after the inoculation in the younger leaves and in the basal portion of intermediate leaves. Apparently, the SA pathway was not triggered by any of the bacteria used. According to these results, the bacteria tested do not seem to be harmful to the plant. Furthermore, we strongly suggest that they enter through the trichomes on the leaf base and remain in this portion, which is precisely the most important for the absorption of nutrients
|
8 |
Respostas à deficiência hídrica relacionadas à ontogenia foliar em Guzmania monostachia (Bromeliaceae): variações do potencial hídrico e expressão de diferentes padrões do Metabolismo Ácido das Crassuláceas (CAM). / Responses to water deficiency related to foliar ontogeny in Guzmania monostachia (Bromeliaceae): water potencial variations and different patterns in the Crassulacean Acid Metabolism (CAM) expressionMancilha, Dioceni 05 December 2017 (has links)
O metabolismo ácido das crassuláceas (CAM) representa uma importante via de assimilação de carbono fotossintético, caracterizado pela fixação do CO2 atmosférico durante o período da noite, por meio da enzima fosfoenolpiruvato carboxilase (PEPC) e pelo acúmulo noturno de ácidos orgânicos. Nesse tipo de fotossíntese, os estômatos permanecem fechados durante a maior parte do dia e, consequentemente, propicia uma maior eficiência no uso da água quando comparado com plantas C3. Essa adaptação ecofisiológica permite às espécies CAM suportar alterações frequentes na disponibilidade de água no meio ambiente. Guzmania monostachia é uma bromélia epífita com tanque que apresenta a capacidade de alterar seu metabolismo fotossintético, passando de C3 a CAM, em resposta a condições ambientais estressantes, constituindo-se, portanto, num interessante modelo de estudo sobre plasticidade fisiológica. Algumas pesquisas anteriores do nosso laboratório mostraram que diferentes regiões foliares de G. monostachia podem desempenhar funções distintas em resposta à escassez hídrica. Foi visto que a expressão do CAM ocorreu com intensidades diferentes ao longo do comprimento foliar, sendo mais pronunciada na região apical. Um possível direcionamento da água da região basal para apical foi hipotetizado ocorrer, de forma que mesmo em situações de curta restrição hídrica (7 dias), a quantidade de água nos tecidos da porção apical permaneceu praticamente constante. Levando em consideração esses resultados prévios, a presente pesquisa teve como objetivo principal caracterizar o padrão de expressão do CAM nas folhas de diferentes estágios ontogenéticos (folhas jovens, intermediárias e maduras), bem como em suas porções, relacionando com as possíveis variações no estado hídrico durante a imposição da restrição no fornecimento de água por um período de até oito dias. E investigar se as variações do potencial hídrico foliar seriam decorrentes de alterações no acúmulo de ácidos orgânicos e/ou açúcares solúveis nas diferentes porções foliares e nas folhas em diferentes estágios do desenvolvimento. Para tanto, plantas de G. monostachia tiveram a rega suspensa durante oito dias e, posteriormente, elas foram reidratadas por dois dias consecutivos. As coletas foram realizadas nas seguintes condições experimentais: 1) sem suspensão de rega, ou seja, as plantas foram mantidas bem hidratadas (controle), 2) com suspenção de rega por 1, 4 e 8 dias e 3) com retorno à rega após o período de seca (2 dias de reidratação). Amostras de folhas em diferentes fases de desenvolvimento (jovens, intermediárias e adultas) foram divididas em três porções ápice, mediana e base para determinação do potencial hídrico, conteúdo relativo de água e abertura do poro estomático, além dos ensaios da atividade enzimática da PEPC, quantificação de açúcares solúveis e do acúmulo noturno de ácido málico. Os resultados demonstraram que as regiões apical e mediana de todas as folhas pertencentes aos diferentes estágios de desenvolvimento da roseta expressaram o CAM, quando submetidas a uma situação de restrição hídrica por no mínimo quatro dias. A porção apical foi a que apresentou os parâmetros indicativos desse metabolismo de forma mais intensa. Além disso, com a imposição à seca, a transição entre o metabolismo C3 para o CAM clássico parece ocorrer até o quarto dia de suspenção de rega, com abertura dos estômatos predominantemente no período da noite e, ao estender o período de escassez hídrica para oito dias, foi possível observar a transição para o CAM do tipo idling, isto é, com fechamento estomático diuturnamente. Observou-se também, uma redução gradual do potencial hídrico ao longo do período de exposição à seca, principalmente no ápice de folhas de diferentes estágios ontogenéticos. Além disso, o ápice das folhas de todos os grupos ontogenéticos e, em especial, as folhas jovens (incluindo as porções mediana e basal) foram os que não apresentaram redução do conteúdo hídrico durante o tratamento de seca por oito dias. Entretanto, a partição de açúcares solúveis foi alterada, de forma que a porção da basal, a qual inicialmente mantinha as maiores quantidades de carboidratos, apresentou reduções significativas no conteúdo de frutose e glicose com o prolongamento da seca para 8 dias. Já a porção apical, teve um comportamento inverso. Esses resultados sugerem que o tratamento de déficit hídrico pode desencadear um ajuste osmótico tanto nos diferentes grupos foliares da roseta quanto no limbo foliar, direcionando, preferencialmente, o transporte da água às folhas jovens e ao ápice das folhas de diferentes idades. Com a retomada da rega, após um período de déficit hídrico de oito dias, notou-se que apenas dois dias de rega normalizada foram suficientes para que o conteúdo hídrico fosse totalmente recuperado. No entanto, a partição de açúcares solúveis entre as folhas da roseta, não apresentou um padrão semelhante ao controle (plantas bem hidratadas). O metabolismo fotossintético também não foi revertido de CAM para C3, sugerindo ser necessário um período maior de reabastecimento de água no tanque / Crassulacean acid metabolism (CAM) is a photosynthetic CO2 fixation pathway that evolved in some plants. It is characterized by the fixation of atmospheric CO2 during the night, by the enzyme phosphoenolpyruvate carboxylase (PEPC) and nocturnal organic acid accumulation. In a plant using CAM, the water use efficiency is maximized because the stomata remain closed during daytime and open at night when the relative humidity of the air is higher. Guzmania monostachia, an epiphytic bromeliad, is an interesting plant model because it presents the ability to change its photosynthetic metabolism, from C3 to CAM, in response to stressful environmental conditions. Previously studies demonstrated that different leaf regions of G. monostachia performed distinct functions in response to water stress. In addition, CAM expression was more pronounced in the apical region. Even in situations of water restriction for 7 days, the amount of water in the tissues of the apical portion remained almost constant. Then, the present study hypothesized that the water may be transported from the base to the apex. The present study aimed at characterize the CAM expression pattern in leaf blade and among different foliar groups (younger, intermediate and older leaves), relating them to variations in water status during suspension irrigation for a period of up to eight days. In addition, the present study investigated if the possible variations of the water leaf potential would be due to changes in the accumulation of organic acids and/or soluble sugars in different leaf portions at different foliar ontogenetic groups. Three experimental conditions were carried out: 1) well-watered condition (control), 2) under suspension irrigation (for 1, 4 and 8 days) and 3) rewatered treatment, after drought period (watered daily for two days). Leaf samples of different foliar groups (younger, intermediate and older) were divided into three portions (apex, middle and base) for determination of water potential, relative water content, stomatal aperture, PEPC activity, quantification of soluble sugars and nocturnal malate accumulation. Results indicated that apical and middle portions of all the leaves belonging to different foliar groups of the rosette expressed CAM when watering was suspended for at least four days. The apical portion displayed the most intense parameters indicative of CAM expression. In addition, with drought imposition, the transition from C3 metabolism to classic CAM appears to occur up to the fourth day of irrigation suspension, with stomatal aperture during nighttime. When extending the period of water shortage for eight days, the establishment of a typical CAM-idling pathway, with stomatal closure during day and night, was verified It was also observed a gradual reduction of water potential, during the period of exposure to drought, mainly at the apical of leaves of different foliar groups. At the apex of all foliar ontogenetic groups, and especially the younger leaves (including the middle and basal portions) were those that did not present reduction of water content during the drought treatment for eight days. However, the partition of soluble sugars was altered, so that the basal portion, which initially maintained the highest carbohydrate levels, showed significant reductions in the fructose and glucose content with prolongation of the drought for 8 days. The apical portion had the opposite behavior. These results suggest that drought treatment can trigger an osmotic adjustment both in the different leaf ontogenetic groups of the rosette and of the leaf blade. In this way, the water transport preferably favors the younger leaves and the apical of the different leaf developmental stages. After a period of water deficit, the plants were rehydrated (for two days) and the water content was fully recovered. However, the partition of soluble sugars along the rosette leaves did not present a pattern similar to that observed before of the beginning of the hydration interruption. The photosynthetic metabolism was also not reversed from the CAM to C3, suggesting that a longer tank replenishment period is necessary
|
Page generated in 0.0587 seconds