• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 3
  • 1
  • Tagged with
  • 31
  • 17
  • 17
  • 11
  • 8
  • 7
  • 7
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

The Bromus tectorum-Pyrenophora semeniperda Pathosystem

Finch, Heather 27 June 2013 (has links) (PDF)
Variable mortality of Pyrenophora semeniperda--infected Bromus tectorum seeds has been referred to as a "race for survival", stating that seeds that germinate quickly are more likely to escape pathogen-caused mortality. Dormancy status is not the only variable determining outcomes within the Bromus-Pyrenophora pathosystem. Varying temperature and exposure to water may strongly influence germination outcomes of B. tectorum when in the presence of P. semeniperda. Low water potentials characteristic of semi-arid soils are often over-looked in the context of seed pathogens, and are ecologically relevant- especially for plant species that inhabit intermittently dry environments. To adequately characterize the Bromus tectorum-Pyrenophora semeniperda pathosystem, four studies were conducted to address the following questions: (1) do temperature, water potential, and dormancy status influence germination outcomes in the Bromus-Pyrenophora pathosystem, (2) do repeated wetting-drying scenarios influence germination outcomes of infected B. tectorum seeds following dehydration at low water potentials similar to those found in the field (i.e., -4 through -150 MPa), (3) can we accurately characterize the asexual life cycle of P. semeniperda on a dormant B. tectorum seed, determining when infection takes place, and what occurs during disease development in continuously hydrated conditions, and (4) how does disease development of P. semeniperda influence the B. tectorum seed embryo and endosperm. All studies were conducted using dormant and/or non-dormant B. tectorum seeds and an intermediate strain of P. semeniperda. Study one used varying temperatures (5-20°C), and five water potentials (0, -0.5, -1, -1.5, -2 MPa) (achieved using PEG 8000). Inoculated seeds were exposed to low water potentials at various temperatures for 7, 14, 21, or 28 days then re-hydrated for 28 days. In the second study, seeds were incubated at 20°C at four nominal water potentials (-4, -10, -40, or -150 MPa) following 8 or 24 hours of initial hydration. Seeds were dehydrated for 1, 7, 14, or 21 days, then re-hydrated. In study three, inoculated seeds were chemically fixed between days 0 and 21 and viewed with a scanning electron microscope. In the fourth study, infected seeds were frozen with liquid nitrogen following 3, 8, and 14 days of disease development, then cross sectioned longitudinally and laterally prior to chemical fixation. Results indicate that non-dormant seeds escape death by germinating rapidly under favorable conditions, that incubation at low water potentials greatly increases seed mortality, that -10 MPa is near the threshold for full pathogen activity, and at water potentials lower than -40 MPa, P. semeniperda may successfully survive severe dehydration if previous hydration resulting in infection has occurred. SEM images indicate that mycelia penetration occurs within 8-24 hours, and that mycelium may penetrate all opening in the seed (i.e., stomata, cracks). Development of P. semeniperda is shown to cause significant damage to the endosperm and embryo within 8 days. As starch is consumed, the endosperm collapses leaving a hollow middle. The embryo is more resilient, but gradually deforms and deteriorates.
22

Secondary Dormancy and Summer Conditions Influence Outcomes in the Pyrenophora semeniperda - Bromus tectorum Pathosystem

Hawkins, Katie Karen 08 July 2014 (has links) (PDF)
Variable mortality of Pyrenophora semeniperda–infected Bromus tectorum seeds has been referred to as a “race for survival.” Dormant seeds are highly susceptible to P. semeniperda infection. While much is known about primary dormancy little is known about secondary dormancy in B. tectorum seeds. Dormancy status is not the only variable determining outcomes within the Bromus - Pyrenophora pathosystem. Varying temperature and intermittent hydration may strongly influence germination outcomes of B. tectorum in the presence of P. semeniperda. While it has long been assumed that B. tectorum seeds are infected by P. semeniperda in the fall it was recently suggested that seeds may be infected in the summer; however, there is little evidence to support this. To further characterize the Pyrenophora semeniperda - Bromus tectorum pathosystem two studies were conducted to address the following: (1) characterization of secondary dormancy in B. tectorum seeds and (2) summer interactions between host and pathogen after summer inoculation. Studies were conducted using dormant and/or non-dormant B. tectorum (along with B. rubens in one study) seeds and two strains of P. semeniperda. Study one used laboratory and field experiments to characterize secondary dormancy in B. tectorum seeds in terms of temperature (0.5-20°C), and water potential (-2.0-0 MPa). Data was used in repeated probit regression analysis to determine hydrothermal parameters (ψb(50), σψb, θHT) for secondary dormancy induction and loss. In the second study seeds were inoculated with one of two strains of P. semeniperda then exposed to intermittent hydration or dry storage at warm temperatures (30-60°C). After treatment seeds were rehydrated and outcomes observed. Optimum conditions for secondary dormancy induction were incubation at -1.0 MPa at 5°C. Seeds were likely to enter secondary dormancy through the cold winter months indicated by an increase or more positive ψb(50), while a decrease or more negative ψb(50) is associated with dormancy loss which is generally observed in the hot, dry summer months. When seeds were inoculated in the summer they only escaped death when summer conditions were ideal for after-ripening which allowed them to germinate rapidly under favorable autumn conditions. However, the pathogen caused high seed mortality no matter the treatment when disease progression advanced enough to inhibit seed germination. Thus this research shows that in areas with frequent summer rain storms, it would be highly advantageous to apply P. semeniperda as a biocontrol on seeds at maturity.
23

Population Genetic Structure of <em>Bromus tectorum</em> in the American Desert Southwest

Eldon, Desiree Rochelle 01 December 2013 (has links) (PDF)
Following its introduction to North America in the late nineteenth century, Bromus tectorum L., an inbreeding invasive winter annual grass, has become dominant on millions of hectares of sagebrush steppe habitat throughout Intermountain Western North America. It appears that within the last 30-40 years, B. tectorum has expanded its range southward into the Mojave Desert and also into more climatically extreme salt desert environments. Previous research using microsatellite markers and experimental studies has suggested that lineages found in desert habitats are genetically distinct from those found in the sagebrush-steppe habitat and possess suites of traits that pre-adapt them to these environments. To provide additional support for our hypothesis that desert habitat-specific haplotypes dominate and are widely distributed across warm and salt desert habitats, we genotyped approximately 20 individuals from each of 39 B. tectorum populations from these habitats and adjacent sagebrush steppe habitats using 71 single nucleotide polymorphic (SNP) markers. Our data clearly demonstrate that populations throughout the Mojave Desert region, as well as in salt desert habitats further north, are dominated by a small number of closely related SNP haplotypes that belong to the desert clade. In contrast, populations from adjacent environments are largely dominated by haplotypes of the common clade, which is widely distributed throughout the North American sagebrush steppe. Populations across all habitats were usually dominated by 1-2 SNP haplotypes. This suggests that inbreeding B. tectorum lineages can often maintain their genetic integrity. It also explains the strong association between marker fingerprints and suites of adaptive traits in this species.
24

Of Fire, Mammals, and Rain: Mechanisms of Plant Invasions

Bishop, Tara Boyce 01 July 2019 (has links)
Biological invasions are driving environmental state changes on a global scale. Exotic plant species must be successful at passing several abiotic and biotic filters to establish and disrupt the native plant community assembly. Understanding where exotic plants are on a regional scale and being able to characterize how exotic plants are generally interacting with their environment is crucial information for exotic species management (chapter 1). In the western United States human-related activities are augmenting the spread of exotic plant species by increasing the ignitions of wildfire. Wildfire can lead to nutrient pulses through the removal of intact native communities and returning some mineral content into the soil. Exotic plant species that have traits that efficiently acquire nutrients accompanied by rapid growth rates may outcompete native plants. In chapters 2, 3, and 4 experimental fires demonstrated that the direct effect of fire may not be as critical as the potential indirect effects of fire such as altering the behavior of consumers (chapter 2) and reducing competition (chapters 3 and 4). In the Mojave desert, rodent consumers can have strong top-down effects on plant community assembly through foraging selection preferences. Life history traits such as seedling and seed size can lead to differential herbivory and positively benefit some plant species while inhibiting others (chapter 1) which could indirectly alter plant-plant interactions. Plant competition is a biotic filter than can determine establishment success or failure. Species that with rapid growth rates and plastic growth responses are likely to be able to capitalize on fluctuations in available resources. In the Great Basin, forecasts in climate change models predict that precipitation timing will lead to heavier fall rains and more rain than snow in the winter. Water availability is one of the main limiting factors in semi-arid and arid ecosystems where native plants have adaptive traits to maximize resource use. The interaction of wildfire and changes in climate, specifically timing of precipitation is critical to understand to be able to predict and protect against increasing wildfire frequency and severity. In chapter three, the responses by a key exotic annual grass, Bromus tectorum, and keystone native perennial shrub Artemisia tridentata subsp. wyomingensis, were positive for increased early fall precipitation but much more pronounced for B. tectorum. Exotic annual plants are able to respond to changes in timing of fall precipitation and have extreme growth which leads to superior competitive abilities through interference and priority effects (chapter 4). Native plants can compete with exotics but the magnitude of the effects are diminished compared to the negative interaction from exotics. Together these findings demonstrate that across several regions exotic annual grasses are capable of passing through abiotic filters and disrupting biotic interactions of the native plant community. This is likely to lead to increased spread of exotic annual species and may indicate potential and availability of fine fuel production supporting increases in size and frequency of wildfires in the western United States.
25

Biology and control of Bromus pectinatus Thunb

Wilcox, Douglas Howard 21 January 2009 (has links)
Investigations into the biology and control of the annual grassy weed Bromus pectinatus Thunb. were conducted at the National Plant Breeding Station, Njoro, Kenya, from 1982 to 1984. Pot growth of B. pectinatus was influenced by soil type and microclimate, but not by seed origin. B. pectinatus was germinated and grown in amended and untreated soils ranging in pH from 3.05 to 8.13. Soils with a pH near 3 could not support growth or germination of B. pectinatus. B. pectinatus grew best on a soil of pH 6.55 and when soil pH influenced germination the optimum soil pH was 6.0. Exposure to light inhibited the germination of B. pectinatus seeds. Germination of B. pectinatus seed was most rapid at a 17 C temperature. Germination of dormant B. pectinatus seeds was enhanced by seed hull removal or pricking the lemma or removing the rachilla segment. Germination of B. pectinatus seed in the soil was unaffected by depth of burial, whereas, emergence was reduced to 35, 19, 11, 4 and 0% from depths of 0, 1, 2, 4 and 8 cm, respectively. There was a relationship between field emergence of B. pectinatus and the precipitation pattern. After-harvest germination of B. pectinatus seed indicated that there was an innate dormancy in hulled seed which persisted for 8 months. Field measurements were used to develop an equation which related yield loss in wheat with B, pectinatus infestation. Delayed sowing of wheat and barley into a B. pectinatus infested site resulted in yield reductions that were correlated with length of delay. Replacement series studies were conducted using varying proportions of wheat : B. pectinatus and rapeseed : B. pectinatus. Rapeseed / canola was unaffected by B. pectinatus interference. A spatial interference study determined that B. pectinatus interfers with wheat mainly above ground. The herbicides isoproturon, pendimethalin and oxadiazon were found to be ineffective against B. pectinatus, The herbicides triallate, chlorsulfuron, metribuzin, trifluralin and EPTC achieved limited control of B, pectinatus. Superior control of B. pectinatus was achieved using fluazifop-butyl at 0.25 kg/ha and fenthiaprop-ethyl at 0.12 kg/ha, in rapeseed / canola. / May 1986
26

Biology and control of Bromus pectinatus Thunb

Wilcox, Douglas Howard 21 January 2009 (has links)
Investigations into the biology and control of the annual grassy weed Bromus pectinatus Thunb. were conducted at the National Plant Breeding Station, Njoro, Kenya, from 1982 to 1984. Pot growth of B. pectinatus was influenced by soil type and microclimate, but not by seed origin. B. pectinatus was germinated and grown in amended and untreated soils ranging in pH from 3.05 to 8.13. Soils with a pH near 3 could not support growth or germination of B. pectinatus. B. pectinatus grew best on a soil of pH 6.55 and when soil pH influenced germination the optimum soil pH was 6.0. Exposure to light inhibited the germination of B. pectinatus seeds. Germination of B. pectinatus seed was most rapid at a 17 C temperature. Germination of dormant B. pectinatus seeds was enhanced by seed hull removal or pricking the lemma or removing the rachilla segment. Germination of B. pectinatus seed in the soil was unaffected by depth of burial, whereas, emergence was reduced to 35, 19, 11, 4 and 0% from depths of 0, 1, 2, 4 and 8 cm, respectively. There was a relationship between field emergence of B. pectinatus and the precipitation pattern. After-harvest germination of B. pectinatus seed indicated that there was an innate dormancy in hulled seed which persisted for 8 months. Field measurements were used to develop an equation which related yield loss in wheat with B, pectinatus infestation. Delayed sowing of wheat and barley into a B. pectinatus infested site resulted in yield reductions that were correlated with length of delay. Replacement series studies were conducted using varying proportions of wheat : B. pectinatus and rapeseed : B. pectinatus. Rapeseed / canola was unaffected by B. pectinatus interference. A spatial interference study determined that B. pectinatus interfers with wheat mainly above ground. The herbicides isoproturon, pendimethalin and oxadiazon were found to be ineffective against B. pectinatus, The herbicides triallate, chlorsulfuron, metribuzin, trifluralin and EPTC achieved limited control of B, pectinatus. Superior control of B. pectinatus was achieved using fluazifop-butyl at 0.25 kg/ha and fenthiaprop-ethyl at 0.12 kg/ha, in rapeseed / canola.
27

Biology and control of Bromus pectinatus Thunb

Wilcox, Douglas Howard 21 January 2009 (has links)
Investigations into the biology and control of the annual grassy weed Bromus pectinatus Thunb. were conducted at the National Plant Breeding Station, Njoro, Kenya, from 1982 to 1984. Pot growth of B. pectinatus was influenced by soil type and microclimate, but not by seed origin. B. pectinatus was germinated and grown in amended and untreated soils ranging in pH from 3.05 to 8.13. Soils with a pH near 3 could not support growth or germination of B. pectinatus. B. pectinatus grew best on a soil of pH 6.55 and when soil pH influenced germination the optimum soil pH was 6.0. Exposure to light inhibited the germination of B. pectinatus seeds. Germination of B. pectinatus seed was most rapid at a 17 C temperature. Germination of dormant B. pectinatus seeds was enhanced by seed hull removal or pricking the lemma or removing the rachilla segment. Germination of B. pectinatus seed in the soil was unaffected by depth of burial, whereas, emergence was reduced to 35, 19, 11, 4 and 0% from depths of 0, 1, 2, 4 and 8 cm, respectively. There was a relationship between field emergence of B. pectinatus and the precipitation pattern. After-harvest germination of B. pectinatus seed indicated that there was an innate dormancy in hulled seed which persisted for 8 months. Field measurements were used to develop an equation which related yield loss in wheat with B, pectinatus infestation. Delayed sowing of wheat and barley into a B. pectinatus infested site resulted in yield reductions that were correlated with length of delay. Replacement series studies were conducted using varying proportions of wheat : B. pectinatus and rapeseed : B. pectinatus. Rapeseed / canola was unaffected by B. pectinatus interference. A spatial interference study determined that B. pectinatus interfers with wheat mainly above ground. The herbicides isoproturon, pendimethalin and oxadiazon were found to be ineffective against B. pectinatus, The herbicides triallate, chlorsulfuron, metribuzin, trifluralin and EPTC achieved limited control of B, pectinatus. Superior control of B. pectinatus was achieved using fluazifop-butyl at 0.25 kg/ha and fenthiaprop-ethyl at 0.12 kg/ha, in rapeseed / canola.
28

Epidemiology of Ustilago bullata Berk. on Bromus tectorum L. and Implication for Biological Control

Boguena, Toupta 15 August 2003 (has links) (PDF)
The seedling-infecting pathogen Ustilago bullata Berk. is a naturally occurring biological control agent for cheatgrass (Bromus tectorum L.). The effects of temperature and nutrients on pathogen teliospore germination behavior and the effects of temperature on host seed germination were examined. The effects of temperature on sporidial proliferation, host infection in a temperature-controlled environment and in a field setting for eight populations were investigated. The infection success of Ustilago bullata on Bromus tectorum in cultivated fields as a function of seeding date, inoculation method, inoculum density, supplemental watering, and litter was also investigated. Teliospores germinated faster on potato dextrose agar than on water agar. Teliospores germinated slowly at temperatures far from the optimum of 15 and 20 C. There were among population variations in teliospore germination and sporidial proliferation, but differences among populations were much more pronounced at temperatures below 15 C. Infection also decreased and varied far from the optimum with almost no infection at 2.5 C in a controlled-environment and in the field for the December-planted seeds. Warmer early fall rather than the colder late fall was suitable for successful infection. This agreed with both laboratory and controlled-environment experiments. Intratetrad mating was observed with teliospores at 2.5 C. Teliospore germination tracked seed germination closely with teliospore germination rate exceeding the host seed germination rate over the range of 10 to 25 C where both were measured. Below 10 C, teliospore germination rate fell below host seed germination. This phenomenon was associated with lower infection percentages, suggesting that teliospore germination needed to be ahead of the seed for maximum infection. Inoculum density was positively correlated with infection rate. Litter significantly increased infection, while supplemental watering significantly increased plant establishment. Since teliospores from different populations showed similar germination patterns at temperatures typical of autumn seedbeds in the Intermountain West, it may not be necessary to use locally-adapted pathogen populations in biological control program. A biocontrol program is most likely to be effective under a scenario where autumn precipitation permits emergence of most of the host seed bank as a fall cohort.
29

Patterns and processes of exotic plant invasions in Riding Mountain National Park, Manitoba, Canada

Otfinowski, Rafael 10 September 2008 (has links)
Invasive exotic species threaten the biodiversity and function of native ecosystems. Existing models, attempting to predict and control successful invaders, often emphasize isolated stages of in their life history and fail to formalize interactions between exotic species and recipient environments. In order to elucidate key mechanisms in the success of select invaders, I investigated the role of dispersal, establishment, proliferation, and persistence in their threat to natural areas. Focusing on Riding Mountain National Park, Manitoba, Canada, I integrated the native climatic range and biological traits of 251 exotic vascular plants reported inside and outside the park. Based on their climatic range in Europe, 155 among 174 exotic plant species absent from the Park were predicted to establish within its boundaries; among these, 40 clonal perennials were considered the highest threat to the Park’s biodiversity. Focusing on smooth brome (Bromus inermis Leyss.), a Eurasian perennial, threatening the structure and function of native prairies throughout the Great Plains, I extended my research to investigate the role of dispersal, establishment, proliferation, and persistence in characterizing its threat to the endemic diversity of northern fescue prairies, protected within Riding Mountain National Park. Patterns of smooth brome invasions were contingent on the type of propagules dispersed. The shallow dispersal gradient of individual florets combined with the steeper gradient of panicles and spikelets suggested that smooth brome is capable of simultaneously invading along dense fronts as well as by establishing isolated foci. While low correlations between the number of dispersed seeds and their recruitment suggested post-dispersal transport, seedling establishment remained contingent on prairie diversity. Seedling biomass increased with declining plant diversity, however, its impact depended on the availability of soil nitrogen. As a result, disturbed areas, preserving the root function of native plants, resisted smooth brome establishment. Even though low nitrogen contributed to a decline in seedling biomass, physiological integration between ramets facilitated their vegetative proliferation in low resource environments. Despite its rapid establishment and proliferation, smooth brome productivity declined at the center of invading clones. Although field and greenhouse observations failed to implicate soilborne pathogens, reasons for the observed decline remain unresolved. My research demonstrates that while Riding Mountain National Park and other natural areas in western Canada will continue to be impacted by exotic plants, integrating key stages in their life history provides an important conceptual framework in predicting their threat to natural areas and prioritizing management. / October 2008
30

Patterns and processes of exotic plant invasions in Riding Mountain National Park, Manitoba, Canada

Otfinowski, Rafael 10 September 2008 (has links)
Invasive exotic species threaten the biodiversity and function of native ecosystems. Existing models, attempting to predict and control successful invaders, often emphasize isolated stages of in their life history and fail to formalize interactions between exotic species and recipient environments. In order to elucidate key mechanisms in the success of select invaders, I investigated the role of dispersal, establishment, proliferation, and persistence in their threat to natural areas. Focusing on Riding Mountain National Park, Manitoba, Canada, I integrated the native climatic range and biological traits of 251 exotic vascular plants reported inside and outside the park. Based on their climatic range in Europe, 155 among 174 exotic plant species absent from the Park were predicted to establish within its boundaries; among these, 40 clonal perennials were considered the highest threat to the Park’s biodiversity. Focusing on smooth brome (Bromus inermis Leyss.), a Eurasian perennial, threatening the structure and function of native prairies throughout the Great Plains, I extended my research to investigate the role of dispersal, establishment, proliferation, and persistence in characterizing its threat to the endemic diversity of northern fescue prairies, protected within Riding Mountain National Park. Patterns of smooth brome invasions were contingent on the type of propagules dispersed. The shallow dispersal gradient of individual florets combined with the steeper gradient of panicles and spikelets suggested that smooth brome is capable of simultaneously invading along dense fronts as well as by establishing isolated foci. While low correlations between the number of dispersed seeds and their recruitment suggested post-dispersal transport, seedling establishment remained contingent on prairie diversity. Seedling biomass increased with declining plant diversity, however, its impact depended on the availability of soil nitrogen. As a result, disturbed areas, preserving the root function of native plants, resisted smooth brome establishment. Even though low nitrogen contributed to a decline in seedling biomass, physiological integration between ramets facilitated their vegetative proliferation in low resource environments. Despite its rapid establishment and proliferation, smooth brome productivity declined at the center of invading clones. Although field and greenhouse observations failed to implicate soilborne pathogens, reasons for the observed decline remain unresolved. My research demonstrates that while Riding Mountain National Park and other natural areas in western Canada will continue to be impacted by exotic plants, integrating key stages in their life history provides an important conceptual framework in predicting their threat to natural areas and prioritizing management.

Page generated in 0.0193 seconds