Spelling suggestions: "subject:"bubble clynamics"" "subject:"bubble ctynamics""
11 |
METHODS AND ANALYSIS OF MULTIPHASE FLOW AND INTERFACIAL PHENOMENA IN MEDICAL DEVICESJavad Eshraghi (12442575) 21 April 2022 (has links)
<p> </p>
<p>Cavitation, liquid slosh, and splashes are ubiquitous in science and engineering. However, these phenomena are not fully understood. Yet to date, we do not understand when or why sometimes the splash seals, and other times does not. Regarding cavitation, a high temporal resolution method is needed to characterize this phenomenon. The low temporal resolution of experimental data suggests a model-based analysis of this problem. However, high-fidelity models are not always available, and even for these models, the sensitivity of the model outputs to the initial input parameters makes this method less reliable since some initial inputs are not experimentally measurable. As for sloshing, the air-liquid interface area and hydrodynamic stress for the liquid slosh inside a confined accelerating cylinder have not been experimentally measured due to the challenges for direct measurement.</p>
|
12 |
Dynamics of bubbles in microchannels: theoretical, numerical and experimental analysisAtasi, Omer 06 November 2018 (has links) (PDF)
This thesis aims at contributing to the characterization of the dynamics of bubbles in microfluidics through modeling and experiments. Two flow regimes encountered in microfluidics are studied, namely, the bubbly flow regime and the Taylor flow regime (or slug flow).In particular, the first part of this thesis focuses on the dynamics of a bubbly flow inside a horizontal, cylindrical microchannel in the presence of surfactants using numerical simulations. A numerical method allowing to simulate the transport of surfactants along a moving and deforming interface and the Marangoni stresses created by an in-homogeneous distribution of these surfactants on this interface is implemented in the Level set module of the research code. The simulations performed with this code regarding the dynamics of a bubbly flow give insights into the complexity of the coupling of the different phenomena controlling the dynamics of the studied system. Fo example it shows that the confinement imposed by the microchannel walls results in a significantly different distribution of surfactants on the bubble surface, when compared to a bubble rising in a liquid of infinite extent. Indeed, surfactants accumulate on specific locations on the bubble surface, and create local Marangoni stresses, that drastically influence the dynamics of the bubble. In some cases, the presence of surfactants can even cause the bubble to burst, a mechanism that is rationalized through a normal stress balance at the back of the bubble. The numerical method implemented in this thesis is also used for a practical problem, regarding the artisanal production of Mezcal, an alcoholic beverage from Mexico.The second part of the thesis deals with the dynamics of a Taylor flow regime, through experiments and analytical modeling. An experimental technique that allows to measure the thickness of the lubrication film forming between a pancake-like bubble and the microchannel wall is developed. The method requires only a single instantaneous bright-field image of a pancake-like bubble translating inside a microchannel. In addition to measuring the thickness of the lubrication film, the method also allows to measure the depth of a microchannel. Using the proposed method together with the measurment of the bubble velocity allows to infer the surface tension of the interface between the liquid and the gaz. In the last chapter of this thesis, the effect of buoyancy on the dynamics of a Taylor flow is quantified. Though often neglected in microfluidics, it is shown that buoyancy effects can have a significant impact on the thickness of the lubrication film and consequently on the dynamics of the Taylor flow. These effects are quantified using experiments and analytical modeling. This work was performed at Princeton University with Professor Howard A. Stone during an eight month stay. / Doctorat en Sciences de l'ingénieur et technologie / info:eu-repo/semantics/nonPublished
|
13 |
Bubble dynamics and boiling heat transfer : a study in the absence and in the presence of electric fieldsSiedel, Samuel 13 April 2012 (has links) (PDF)
Since boiling heat transfer affords a very effective means to transfer heat, it is implemented in numerous technologies and industries ranging from large power generation plants to micro-electronic thermal management. Although having been a subject of research for several decades, an accurate prediction of boiling heat transfer is still challenging due to the complexity of the coupled mechanisms involved. It appears that the boiling heat transfer coefficient is intimately related to bubble dynamics (i.e. bubble nucleation, growth and detachment) as well as factors such as nucleation site density and interaction between neighbouring and successive bubbles. In order to contribute to the understanding of the boiling phenomenon, an experimental investigation of saturated pool boiling from a single or two neighbouring artificial nucleation sites on a polished copper surface has been performed. The bubble growth dynamics has been characterized for different wall superheats and a experimental growth law has been established. The interaction between successive bubbles from the same nucleation site has been studied, showing the bubble shape oscillations that can be caused by these interactions. The forces acting on a growing bubble has been reviewed, and a complete momentum balance has been made for all stages of bubble growth. The curvature along the interface has been measured, and indications concerning the mechanism of bubble detachment have been suggested. The rise of bubble after detachment has been investigated, and the maximum velocity reached before a change of direction has been estimated and compared to existing models from the literature. The interaction between bubbles growing side by side has been studied: the generation and propagation of a wave front during the coalescence of two bubbles has been highlighted. As boiling heat transfer enhancement techniques are being imagined and developed, this study also focuses on the electrohydrodynamic enhancement technique. Boiling experiments have been performed in the presence of electric fields, and their effects on heat transfer and bubble dynamics have been characterized. Although the volume of the bubbles at detachment and the relationship between the bubble frequency and the wall superheat were not affected, the bubble growth curve was modified. The bubbles were elongated in the direction of the electric field, and this elongation was estimated and compared to other studies from the literature. The rising velocity of the bubble was reduced in the presence of electric field, and the behaviour of bubbles growing side by side was modified, the electric field causing the bubbles to repeal each other. These results, obtained in a fully controlled environment, provide compelling evidence that electric fields can be implemented to alter the bubble dynamics and subsequently heat transfer rates during boiling of dielectric fluids.
|
14 |
Dynamique de bulles de cavitation dans de l'eau micro-confinée sous tension. Application à l'étude de l'embolie dans les arbres / Dynamics of cavitation bubbles in micro-confined water under tension. Application to the study of embolism in trees.Vincent, Olivier 12 October 2012 (has links)
Les liquides sont capables, comme les solides, de supporter des forces de traction. Ils sont alors à pression négative (c'est-à-dire en tension), dans un état qui est métastable. Le retour vers un état stable à pression positive peut se faire par la nucléation d'une bulle, un processus appelé cavitation. Dans cette thèse nous nous intéressons aux propriétés de la cavitation en milieu confiné, avec un accent particulier sur la dynamique des bulles. Ce sujet est motivé par l'étude du transport de l'eau dans les arbres dont une partie (la sève montante) se fait sous tension, dans des canaux micrométriques. La cavitation entraîne alors l'embolie des éléments conducteurs de sève, c'est-à-dire leur remplissage par du gaz. Une grande partie du manuscrit est consacrée à l'étude de la cavitation dans un milieu modèle, où de l'eau est confinée dans des inclusions sphériques micrométriques au sein d'un hydrogel. L'évaporation passive de l'eau à travers le gel permet de générer des pressions négatives, et la cavitation peut se produire spontanément ou être déclenchée à l'aide d'un laser. Nous résolvons la dynamique subséquente de la bulle à l'aide de diverses méthodes (caméra time-lapse ou caméra rapide, diffusion de la lumière, strobophotographie laser ...) et montrons qu'après une séquence inertielle ultra-rapide, la bulle atteint un état d'équilibre temporaire, puis grossit de manière quasi-statique sous l'effet des flux d'eau dans l'hydrogel, provoquant "l'embolie" de l'inclusion. Une place importante est accordée à un chapitre de théorie qui explore d'une part les propriétés thermodynamiques d'un liquide confiné à pression négative, et d'autre part la dynamique aux temps courts de bulles de cavitation dans de tels systèmes. Nous proposons ainsi une équation de Rayleigh-Plesset modifiée qui rend compte de l'accélération importante des oscillations radiales des bulles que nous avons observée expérimentalement. La compressibilité du liquide et l'élasticité du confinement sont des éléments-clés de ce modèle. Enfin, nous discutons l'application des résultats précédents dans le contexte des arbres, tout en proposant une nouvelle méthode expérimentale qui permet un suivi optique du processus d'embolie. Nous présentons quelques résultats obtenus sur des échantillons de pin sylvestre. / Liquids can sustain traction forces, as solids do. In this case, they are at negative pressure (that is, under tension), in a metastable state. Nucleation of a bubble can occur, leading the system back to a stable state : this process is called cavitation. In this PhD work, we are interested in the properties of cavitation in a confined liquid, with a particular emphasis on bubble dynamics. This study is motivated by the context of water transport in plants : ascending sap is indeed under tension, in natural micro-channels. Cavitation then leads to embolism, i. e. the gas-filling of these channels. A significant part of the manuscript is devoted to the study of cavitation in a model system : spherical inclusions of water are embedded in a hydrogel, and passive evaporation of water through the gel allows the generation of negative pressures. Cavitation can then happen spontaneously or be triggered with a laser. We resolve the subsequent dynamics of the bubble, using several methods (fast or time-lapse camera, light scattering, laser strobe photography ...), showing that after a first ultra-fast inertial step, the bubble reaches a temporary equilibrium. Then, it slowly grows due to fluxes in the hydrogel, leading to full embolism of the inclusion. A theoretical chapter follows. First, the thermodynamical properties of a confined liquid under negative pressure are investigated. In a second part, we focus on the dynamics of cavitation bubbles in such systems, at short time scales. We derive a modified Rayleigh-Plesset equation which accounts for the experimentally observed ultra-fast radial oscillations of the bubbles. Liquid compressibility and confinement elasticity are key ingredients in this model. Last, the applicability of the previous results in the context of trees is discussed. A new method to directly study embolism in trees by optical means is also presented, and applied to Scots pine samples.
|
15 |
Mouvement et sillage de bulles isolées ou en interaction confinées entre deux plaques / Motion and wake of isolated or interacting bubbles rising in a thin gap cellFilella, Audrey 19 January 2015 (has links)
Ce travail de recherche s'intéresse à la dynamique de bulles en ascension à grand nombre de Reynolds dans un liquide fortement confiné entre deux plaques (cellule de Hele-Shaw). Dans le régime étudié, les trajectoires des bulles et leurs déformations sont contenues dans le plan de la cellule. La dynamique essentiellement bidimensionnelle favorise en particulier l'observation d'interactions entre bulles. Cette étude expérimentale comprend donc deux volets : l'analyse de la dynamique d'une bulle isolée et de son sillage et celle des interactions hydrodynamiques entre deux bulles. La cinématique des bulles (forme, trajectoire et vitesse) est mesurée à partir de visualisations par ombroscopie sur une large gamme de tailles caractérisées par un diamètre équivalent dans le plan, noté d. La dynamique des sillages est quant à elle étudiée par Vélocimétrie par Image de Particules (PIV) à Haute Fréquence. Concernant l'étude de la bulle isolée, nous avons exploré la situation où les bulles montent dans un liquide au repos et celle où elles sont soumises à un écoulement descendant à contre-courant. En liquide au repos, pour des bulles de taille suffisante qui ne sont pas mobiles dans l'interstice d'épaisseur e nous avons montré que la vitesse moyenne d'ascension Vb est proportionnelle à (e/d)⅙ √gd, et que le nombre de Reynolds défini par Re=Vbd/v fixe la déformation des bulles. De plus des lois d'échelle simples sont obtenues dans la gamme 1200≤Re≤3000 et e/d ≤ 0,4 pour les grandeurs décrivant les oscillations de trajectoire dans le repère de la bulle. Par ailleurs, des mesures de vitesse nous ont permis de caractériser la structure du sillage associé aux oscillations de trajectoire de la bulle. Nous avons tout d'abord étudié en détail les caractéristiques du détachement tourbillonnaire. Ces mesures de vitesse dans les sillages ont également mis en évidence l'existence de deux dynamiques distinctes sur deux échelles de temps nettement séparées : la période d'oscillation de la bulle et le temps visqueux défini à partir de e. En écoulement à contre-courant, un résultat intéressant consiste en la disparition de la phase intermédiaire d'appariement tourbillonnaire dans l'allée de von Karman de bulles oscillantes pour la plus importante des vitesses du contre-écoulement. La caractérisation de la cinématique des bulles isolées et des perturbations de vitesse qu'elles induisent dans le liquide a permis d'aboutir à des lois d'échelle suffisamment robustes pour pouvoir prédire leur comportement instationnaire simplement à partir de leur taille. Cette connaissance s'avère cruciale dans l'analyse des interactions entre deux bulles pour explorer les écarts de leur comportement cinématique par rapport au cas isolé. Les expériences d'interaction entre deux bulles consistent à injecter deux bulles successives et à observer leur mouvement ainsi que celui qu'elles induisent dans la phase liquide. Le suivi des bulles par ombroscopie permet de distinguer plusieurs modes d'interaction entre les bulles : attraction horizontale, entrainement vertical, éjection du sillage ou rebond, contournement, positionnement préférentiel et coalescence. Certains mécanismes d'interaction ont été plus spécifiquement étudiés à l'aide de mesures par vélocimétrie. Nous avons ainsi pu quantifier l'effet du sillage de la première bulle sur la deuxième, et notamment caractériser l'interaction bulle - tourbillon. / We study the dynamics of bubbles rising in a liquid confined in a thin-gap cell (Hele-Shaw cell of thickness e). In the regime investigated corresponding to high Reynolds numbers, bubble paths and deformations occur in the plane of the cell. This two-dimensional dynamics facilitates the observation of bubbles interaction. The aim of the investigation is twofold: the analysis of the coupling between the motion of an isolated oscillating bubble and its wake, and the analysis of the hydrodynamical interactions between two bubbles. Bubble motions (shape, trajectory and velocity) are measured from visualizations using shadowgraphy for a large range of bubble sizes characterized by their in-plane equivalent diameter d. The behaviour of the wake is explored using High Frequency Particle Image Velocimetry (HF PIV). We investigated the kinematics of an isolated bubble when its size d increases. We showed that the mean vertical velocity of the bubble Vb is proportional to (e/d)⅙ √gd, and that the Reynolds number Re=Vbd/v determines its mean deformation. Simple scaling laws were then obtained in the range 1200≤Re≤3000 and e/d ≤ 0,4 for all the quantities describing the path oscillations of the bubble in its reference frame. Moreover, measurements of the liquid velocity allowed us to characterize the structure of the wake associated to the oscillating bubbles. We first investigated in detail the characteristics of vortex shedding. We then showed that the time evolution of the bubble wake depends on two contrasted time scales. The first corresponds to short times on the order of the period of oscillation and the second to the effect of wall friction becoming predominant for times comparable to the viscous time scale based on the gap thickness e. In the presence of a sufficiently strong counterflow, we observed the disappearance of the intermediate phase of vortex pairing in the wake of an isolated oscillating bubble. The characterization of the bubble kinematics and of the bubble-induced velocity perturbation in the liquid phase for the isolated bubble provided scaling laws robust enough to predict their periodic motion. This knowledge is fundamental for the discussion of hydrodynamical interactions, allowing us to discuss the kinematics of interacting bubbles as compared to their kinematics as isolated bubbles. Experiments consisted in the injection of two successive bubbles in the cell, the observation of their motions and the measurement of the perturbations induced in the liquid phase. Visualizations of the bubbles motions allowed us to observe several types of interactions: horizontal attraction, vertical entrainment, ejection or bouncing, preferential positioning, and coalescence. Some mechanisms occurring during interaction have been more precisely studied using HF PIV, in particular the effect of the wake of the leading bubble on the trailing bubble, and the associated bubble-vortex interaction.
|
16 |
Combined effect of electric field and surface modification on pool boiling of R-123Ahmad, Syed Waqas January 2012 (has links)
The effect of surface modification and high intensity electric field (uniform and non – uniform) acting separately or in combination on pool boiling of R-123 is presented in this thesis. The effect of surface modification was investigated on saturated pool boiling of R-123 for five horizontal copper surfaces modified by different treatments, namely: an emery polished surface, a fine sandblasted surface, a rough sandblasted surface, an electron beam (EB) enhanced surface and a sintered surface. Each 40 mm diameter heating surface formed the upper face of an oxygen-free copper block, electrically heated by embedded cartridge heaters. The experiments were performed from the convective heat transfer regime to the critical heat flux, with both increasing and decreasing heat flux, at 1.01 bar, and additionally at 2 bar and 4 bar for the emery polished surface. Significant enhancement of heat transfer with increasing surface modification was demonstrated, particularly for the EB enhanced and sintered surfaces. The emery polished and sandblasted surface results are compared with nucleate boiling correlations and other published data. The effect of uniform and non-uniform electric fields on saturated pool boiling of R-123 at 1.01 bar pressure was also examined. This method of heat transfer enhancement is known as electrohydrodynamic abbreviated as EHD-enhancement. A high voltage potential was applied at the electrode located above the heating surface, which was earthed. The voltage was varied from 0 to 30 kV. The uniform electric field was provided through a 40 mm diameter circular electrode of stainless steel 304 wire mesh having an aperture of 5.1 mm, while the non-uniform electric field was obtained by using a 40 mm diameter circular rod electrode with rods 5 and 8 mm apart. The effect of uniform electric field was investigated using all five modified surfaces, i.e. emery polished, fine sandblasted, rough sandblasted, EB enhanced and sintered surfaces, while non – uniform electric field was tested using the emery polished, fine sandblasted, EB enhanced and sintered surfaces. The effect of pressure on EHD enhancement was also examined using emery polished surface at saturation pressure of 2 and 4 bars while the electric field was fix at 20 kV corresponding to 2 MV/m. Further, the bubble dynamics is presented for the emery polished surface obtained using a high-speed high – resolution camera.
|
17 |
The motion of bubbles and capsules in tubes of varying geometryDawson, Geoffrey January 2014 (has links)
This thesis addresses aspects of the transport of bubbles and capsules (a thin elastic membrane enclosing a viscous fluid) by means of a viscous flow in complex vessel geometries. It focusses on two related themes: (i) the trapping of air bubbles in a sudden streamwise tube expansion and (ii) the extreme deformation of bubbles and capsules in a localised tube constriction. Air bubbles of different volumes were trapped in a tube with a square cross-section, which contains a sudden streamwise expansion in tube width. The liquid filling the tube was driven by constant volume-flux flow, and experiments were performed in both millimetric and micrometric tubes to identify the range of flow rates for which bubbles could get trapped. The gradients in surface energy generated by the broadening of the bubble into the expansion depend strongly on bubble volume and the expansion length. It is shown that in order for a trapped bubble to release from the expansion, the work of the pressure forces due to flow past the bubble must exceed the change in surface energy required to squeeze into the narrower channel. This criterion for trapping was verified by direct pressure measurements and a capillary static model, which uses three-dimensional Surface Evolver calculations. The extreme deformation of bubbles and capsules was investigated using a localised constriction of the tube width. Both bubbles and capsules were shown to adopt highly contorted configurations and exhibit broadly similar features over a wide range of flow rates, suggesting that the deformation was primarily imposed by the geometry through viscous shear forces. However, bubbles and capsules also display distinguishing features. Bubbles can breakup and exhibit thinning of the rear of the bubble at a critical flow rate, which is associated with a divergence of the rear tip speed and curvature. In contrast, the capsule membrane can wrinkle and fold, and the membrane thickness imposes the value of the maximum curvature locally available to the capsule.
|
18 |
Lagrangeovský model pohybu kavitační bubliny / Lagrangian tracking of the cavitation bubbleBossio Castro, Alvaro Manuel January 2019 (has links)
In this thesis, the dynamics of an isolated cavitation bubble submerged in a steady flow is studied numerically. A Lagrangian-Eulerian approach is considered, in which properties of the fluid are computed first by means of Eulerian methods (in this study the commercial CFD software Ansys Fluent 19 was used) and the trajectory of the bubble is then computed in a Lagrangian fashion, i.e. the bubble is considered as a small particle moving relative to the fluid, due to the effect of several forces depending on fluid's pressure field, fluid's velocity field and bubble's radius. Bubble's radius dynamics, modeled by Rayleigh-Plesset equation, has a big influence on its kinetics, so a special attention is given to it. Two study cases are considered. The first one, motivated by acoustic cavitation is concerned with the response of the bubble's radius in a static flow under the influence of an oscillatory pressure field, the second one studies the trajectory of the bubble submerged in a fluid passing by a Venturi tube and a sharp-edged orifice plate.
|
19 |
Propagation d'une onde de choc dans un liquide aéré : modélisation et application aux rideaux de bulles / Propagation of shock waves in bubbly liquids : modelling and application to the bubble curtain problemGrandjean, Hervé 24 October 2012 (has links)
L'objectif de ces travaux est de déterminer l'atténuation des effets d'une explosion sous-marine par un rideau de bulles. Dans ce cadre, une modélisation de la propagation d'un chocdans les liquides à bulles a été développée, basée sur une technique de transition d'échelles.Cette méthode permet la formulation de modèles continus de liquides aérés, dont la mise enoeuvre est aisée et rapide. Nous avons d'abord développé une modélisation pour des liquidesdiphasiques au sein desquels les bulles sont régulièrement réparties dans l'espace, avant deproposer une extension de ce modèle au cas des liquides à bulles présentant des hétérogénéitésde porosité sous la forme d'amas sphériques de bulles. Un modèle de fragmentation des bulleslors du passage du choc a également été développé, basé sur une analyse linéaire de stabilitédes bulles. L'étude a permis d'établir un critère prédictif de fission et de déterminer le nombrede fragments associés. L'ensemble des modélisations proposées a fait l'objet de comparaisonsavec des résultats expérimentaux issus de la littérature. La concordance entre résultats d'essaiset résultats issus de la modélisation démontre les capacités prédictives de l'approche proposée.Cette modélisation a enfin été appliquée au cas de rideaux de bulles soumis à une explosionsous-marine. Une étude de sensibilité sur les paramètres physiques du rideau a été menée, eta permis de confirmer les tendances expérimentales : sous certaines conditions, la dispositiond'un rideau de bulles sous l'eau permet de diminuer de façon très conséquente l'énergie duchoc transmis en aval du rideau. / The present work deals with the modelling of shock wave propagation in bubbly liquids, inorder to assess the damping of underwater explosion by bubble curtains. The modelling is basedon a scale transition technique, which allows to formulate efficient continuum models of bubblyliquids. A modelling of homogeneous bubbly liquids has first been proposed, then extended tothe case of liquids with spherical bubble clusters. A modelling of bubble fragmentation duringshock propagation has also been developed, based on a stability analysis of the bubbles. Thisstudy enables us to establish a criterion for bubble fission and to determine the numberof fragments. The accuracy of the proposed models has been assessed through comparisonwith experimental data of the literature. The agreement between numerical and experimentalresults proves the predictive capabilities of the whole approach. The modelling has then beenapplied to the mitigation of UNDEX-induced shock wave by bubble curtain. A sensitive studyabout physical parameters of the curtain has been performed, and confirms the experimentaltendencies : the use of a bubble curtain can dissipate a significant part of the shock energy.
|
20 |
High-Frequency Ultrasound Drug Delivery and CavitationDiaz, Mario Alfonso 02 January 2007 (has links) (PDF)
The viability of a drug delivery system which encapsulates chemotherapeutic drugs (Doxorubicin) in the hydrophobic core of polymeric micelles and triggers release by ultrasound application was investigated at an applied frequency of 500 kHz. The investigation also included elucidating the mechanism of drug release at 70 kHz, a frequency which had previously been shown to induce drug release. A fluorescence detection chamber was used to measure in vitro drug release from both Pluronic and stabilized micelles and a hydrophone was used to monitor bubble activity during the experiments. A threshold for release between 0.35 and 0.40 in mechanical index was found at 70 kHz and shown to correspond with the appearance of the subharmonic signal in the acoustic spectrum. Additionally, drug release was found to correlate with increase in subharmonic emission. No evidence of drug release or of the subharmonic signal was detected at 500 kHz. These findings confirmed the role of cavitation in ultrasonic drug release from micelles. A mathematical model of a bubble oscillator was solved to explore the differences in the behavior of a single 10 um bubble under 70 and 500 kHz ultrasound. The dynamics were found to be fundamentally different; the bubble follows a period-doubling route to chaos at 500 kHz and an intermittent route to chaos at 70 kHz. It was concluded that this type of "intermittent subharmonic" oscillation is associated with the apparent drug release. This research confirmed the central role of cavitation in ultrasonically-triggered drug delivery from micelles, established the importance of subharmonic bubble oscillations as an indicator, and expounded the key dynamic differences between 70 and 500 kHz ultrasonic cavitation.
|
Page generated in 0.0308 seconds