• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 2
  • 1
  • Tagged with
  • 12
  • 12
  • 6
  • 5
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Experimental pool boiling investigation of FC-72 on silicon with artificial cavities, integrated temperature micro-sensors and heater

Hutter, Christian January 2010 (has links)
Today nucleate boiling is widely used in numerous industrial applications such as cooling processes because of the high achieved heat transfer rates for low temperature differences. It remains a possible cooling solution for the next generation of central processing units (CPU), which dissipate heat fluxes exceeding the capabilities of today’s conventional forced air cooling. However, nucleate boiling is a very complex and elusive process involving many mechanisms which are not fully understood yet and a comprehensive model is still missing. For this study a new experimental setup was designed, constructed and commissioned to investigate bubble nucleation, growth, departure and interaction during nucleate pool boiling from a silicon device fully immersed in fluorinert FC-72. The location of bubble nucleation is controlled by artificial cavities etched into the silicon substrate. Boiling is initiated with a heater integrated on the back and micro-sensors indicate the wall temperature at the bubble nucleation site. During this work three different silicon test section designs were fabricated and boiling experiments on these substrates successfully conducted. Bubble growth, bubble departure frequencies and bubble departure diameters for different dimensioned artificial cavities, varied pressure and increasing wall temperature were measured from high-speed imaging sequences. Bubble interactions like vertical and horizontal coalescence were visualised and their impact on the boiling heat transfer investigated. The influence of spacing between two neighbouring artificial cavities on bubble nucleation and departure frequencies, vertical coalescence frequencies and departure diameters was analysed. The acquired data are used as input for a numerical code developed by our collaborators (Brunel University, UK and Los Alamos National Laboratories, USA) and are a first step to validate the code. The code studies the interactions between bubble nucleation sites on solid surfaces as a network. The simulations will help design boiling substrates utilised for chip cooling applications with optimal artificial cavity distribution to maximise the cooling heat transfer.
2

Bubble Nucleation in Saturated and Subcooled Boiling

De, Pabitra Lal 04 1900 (has links)
<p> An experimental investigation is reported for water boiling at atmospheric pressure on a copper surface. Bubble nucleation at an artificial site was observed for five heat fluxes between 11,000 and 20,000 BTU/Hr Ft^2, and subcooling from 0° to about 30°F. Using Wiebe's correlation for heat flux and superheat layer thickness, four mathematical models were tested. The measured results are found to provide excellent agreement with the Han and Griffith model for bubble nucleation.</p> / Thesis / Master of Engineering (MEngr)
3

Bubble Formation in a Horizontal Channel at Subcooled Flow Condition

Shaban Nejad, Saman 27 November 2013 (has links)
Bubble nucleation at subcooled flow boiling condition in a horizontal annular channel with a square cross section by the use of high-speed camera is investigated. The channel represents a scaled-down version of a single rod of CANDU reactor core. The experiments were performed by the use of water at pressures between 1-3 atm, constant heat flux of 0.124 MW/m2, liquid bulk subcooling of 32-1oC and mean flow velocities of 0.3-0.4 m/s. Bubble lift-off diameters were obtained from direct high speed videography. The developed model for the bubble lift-off diameter was obtained by analyzing the forces acting on a bubble. Furthermore, a model for the bubble growth rate constant was suggested. The proposed model was then compared to experimental data and it has shown a good agreement with the experimental data. Additionally, the effects of liquid bulk subcooling, liquid pressure and mean flow velocity on bubble lift-off diameter were investigated.
4

Bubble Formation in a Horizontal Channel at Subcooled Flow Condition

Shaban Nejad, Saman 27 November 2013 (has links)
Bubble nucleation at subcooled flow boiling condition in a horizontal annular channel with a square cross section by the use of high-speed camera is investigated. The channel represents a scaled-down version of a single rod of CANDU reactor core. The experiments were performed by the use of water at pressures between 1-3 atm, constant heat flux of 0.124 MW/m2, liquid bulk subcooling of 32-1oC and mean flow velocities of 0.3-0.4 m/s. Bubble lift-off diameters were obtained from direct high speed videography. The developed model for the bubble lift-off diameter was obtained by analyzing the forces acting on a bubble. Furthermore, a model for the bubble growth rate constant was suggested. The proposed model was then compared to experimental data and it has shown a good agreement with the experimental data. Additionally, the effects of liquid bulk subcooling, liquid pressure and mean flow velocity on bubble lift-off diameter were investigated.
5

Fundamental Study Of Fc-72 Pool Boiling Surface Temperature Fluctuations And Bubble Behavior

Griffin, Alison 01 January 2008 (has links)
A heater designed to monitor surface temperature fluctuations during pool boiling experiments while the bubbles were simultaneously being observed has been fabricated and tested. The heat source was a transparent indium tin oxide (ITO) layer commercially deposited on a fused quartz substrate. Four copper-nickel thin film thermocouples (TFTCs) on the heater surface measured the surface temperature, while a thin layer of sapphire or fused silica provided electrical insulation between the TFTCs and the ITO. The TFTCs were micro-fabricated using the liftoff process to deposit the nickel and copper metal films. The TFTC elements were 50 microns wide and overlapped to form a 25 micron by 25 micron junction. TFTC voltages were recorded by a DAQ at a sampling rate of 50 kHz. A high-speed CCD camera recorded bubble images from below the heater at 2000 frames/second. A trigger sent to the camera by the DAQ synchronized the bubble images and the surface temperature data. As the bubbles and their contact rings grew over the TFTC junction, correlations between bubble behavior and surface temperature changes were demonstrated. On the heaters with fused silica insulation layers, 1-2 C temperature drops on the order of 1 ms occurred as the contact ring moved over the TFTC junction during bubble growth and as the contact ring moved back over the TFTC junction during bubble departure. These temperature drops during bubble growth and departure were due to microlayer evaporation and liquid rewetting the heated surface, respectively. Microlayer evaporation was not distinguished as the primary method of heat removal from the surface. Heaters with sapphire insulation layers did not display the measurable temperature drops observed with the fused silica heaters. The large thermal diffusivity of the sapphire compared to the fused silica was determined as the reason for the absence of these temperature drops. These findings were confirmed by a comparison of temperature drops in a 2-D simulation of a bubble growing over the TFTC junction on both the sapphire and fused silica heater surfaces. When the fused silica heater produced a temperature drop of 1.4 C, the sapphire heater produced a drop of only 0.04 C under the same conditions. These results verified that the lack of temperature drops present in the sapphire data was due to the thermal properties of the sapphire layer. By observing the bubble departure frequency and site density on the heater, as well as the bubble departure diameter, the contribution of nucleate boiling to the overall heat removal from the surface could be calculated. These results showed that bubble vapor generation contributed to approximately 10% at 1 W/cm^2, 23% at 1.75 W/cm^2, and 35% at 2.9 W/cm^2 of the heat removed from a fused silica heater. Bubble growth and contact ring growth were observed and measured from images obtained with the high-speed camera. Bubble data recorded on a fused silica heater at 3 W/cm^2, 4 W/cm^2, and 5 W/cm^2 showed that bubble departure diameter and lifetime were negligibly affected by the increase in heat flux. Bubble and contact ring growth rates demonstrated significant differences when compared on the fused silica and sapphire heaters at 3 W/cm^2. The bubble departure diameters were smaller, the bubble lifetimes were longer, and the bubble departure frequency was larger on the sapphire heater, while microlayer evaporation was faster on the fused silica heater. Additional considerations revealed that these differences may be due to surface conditions as well as differing thermal properties. Nucleate boiling curves were recorded on the fused silica and sapphire heaters by adjusting the heat flux input and monitoring the local surface temperature with the TFTCs. The resulting curves showed a temperature drop at the onset of nucleate boiling due to the increase in heat transfer coefficient associated with bubble nucleation. One of the TFTC locations on the sapphire heater frequently experienced a second temperature drop at a higher heat flux. When the heat flux was started from 1 W/cm^2 instead of zero or returned to zero only momentarily, the temperature overshoot did not occur. In these cases sufficient vapor remained in the cavities to initiate boiling at a lower superheat.
6

AN EXPERIMENTAL AND THEORETICAL INVESTIGATION ON THE KINETICS OF WATER EXSOLUTION IN HIGH SILICATE MELTS

Nicholis, Mikes G. 11 October 2001 (has links)
No description available.
7

Phase equilibria and nucleation in condensed phases: a statistical mechanical study

Apte, Pankaj A. 05 January 2006 (has links)
No description available.
8

Hydrodynamic and Thermal Effects of Sub-critical Heating on Superhydrophobic Surfaces and Microchannels

Cowley, Adam M. 01 November 2017 (has links)
This dissertation focuses on the effects of heating on superhydrophobic (SHPo) surfaces. The work is divided into two main categories: heat transfer without mass transfer and heat transfer in conjunction with mass transfer. Numerical methods are used to explore the prior while experimental methods are utilized for the latter. The numerical work explores convective heat transfer in SHPo parallel plate microchannels and is separated into two stand-alone chapters that have been published archivally. The first considers surfaces with a rib/cavity structure and the second considers surfaces patterned with a square lattice of square posts. Laminar, fully developed, steady flow with constant fluid properties is considered where the tops of the ribs and posts are maintained at a constant heat flux boundary condition and the gas/liquid interfaces are assumed to be adiabatic. For both surface configurations the overall convective heat transfer is reduced. Results are presented in the form of average Nusselt number as well as apparent temperature jump length (thermal slip length). The heat transfer reduction is magnified by increasing cavity fraction, decreasing Peclet number, and decreasing channel size relative to the micro-structure spacing. Axial fluid conduction is found to be substantial at high Peclet numbers where it is classically neglected. The parameter regimes where prior analytical works found in the literature are valid are delineated. The experimental work is divided into two stand-alone chapters with one considering channel flow and the other a pool scenario. The channel work considers high aspect ratio microchannels with one heated SHPo wall. If water saturated with dissolved air is used, the air-filled cavities of SHPo surfaces act as nucleation sites for mass transfer. As the water heats it becomes supersaturated and air can effervesce onto the SHPo surface forming bubbles that align to the underlying micro-structure if the cavities are comprised of closed cells. The large bubbles increase drag in the channel and reduce heat transfer. Once the bubbles grow large enough, they are expelled from the channel and the nucleation and growth cycle begins again. The pool work considers submerged, heated SHPo surfaces such that the nucleation behavior can be explored in the absence of forced fluid flow. The surface is maintained at a constant temperature and a range of temperatures (40 - 90 °C) are explored. Similar nucleation behavior to that of the microchannels is observed, however, the bubbles are not expelled. Natural convection coefficients are computed. The surfaces with the greatest amount of nucleation show a significant reduction in convection coefficient, relative to a smooth hydrophilic surface, due to the insulating bubble layer.
9

Comprehensive Investigation of the Uranium-Zirconium Alloy System: Thermophysical Properties, Phase Characterization and Ion Implantation Effects

Ahn, Sangjoon 16 December 2013 (has links)
Uranium-zirconium (U-Zr) alloys comprise a class of metallic nuclear fuel that is regularly considered for application in fast nuclear energy systems. The U-10wt%Zr alloy has been demonstrated to very high burnup without cladding breach in the Experimental Breeder Reactor-II (EBR-II). This was accomplished by successfully accommodating gaseous fission products with low smear density fuel and an enlarged cladding plenum. Fission gas swelling behavior of the fuel has been experimentally revealed to be significantly affected by the temperature gradient within a fuel pin and the multiple phase morphologies that exist across the fuel pin. However, the phase effects on swelling behavior have not been yet fully accounted for in existing fuel performance models which tend to assume the fuel exists as a homogeneous single phase medium across the entire fuel pin. Phase effects on gas bubble nucleation and growth in the alloy were investigated using transmission electron microscopy (TEM). To achieve this end, a comprehensive examination of the alloy system was carried out. This included the fabrication of uranium alloys containing 0.1, 2, 5, 10, 20, 30, 40, and 50 wt% zirconium by melt-casting. These alloys were characterized using electron probe micro-analysis (EPMA), differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA). Once the alloys were satisfactorily characterized, selected U-Zr alloys were irradiated with 140 keV He^(+) ions at fluences ranging from 1 × 10^(14) to 5 × 10^(16) ions/cm^(2). Metallographic and micro-chemical analysis of the alloys indicated that annealing at 600 °C equilibrates the alloys within 168 h to have stable α-U and δ-UZr_(2) phase morphologies. This was in contrast to some reported data that showed kinetically sluggish δ-UZr_(2) phase formation. Phase transformation temperatures and enthalpies were measured using DSC-TGA for each of the alloys. Measured temperatures from different time annealed alloys have shown consistent matches with most of the features in the current U-Zr phase diagram which further augmented the EPMA observed microstructural equilibrium. Nevertheless, quantitative transformation enthalpy analysis also suggests potential errors in the existing U-Zr binary phase diagram. More specifically, the (β-U, γ2) phase region does not appear to be present in Zr-rich (> 15 wt%) U-Zr alloys and so further investigation may be required. To prepare TEM specimens, characterized U-Zr alloys were mechanically thinned to a thickness of ~150 μm, and then electropolished using a 5% perchloric acid/95% methanol electrolyte. Uranium-rich phase was preferentially thinned in two phase alloys, giving saw-tooth shaped perforated boundaries; the alloy images were very clear and alloy characterization was accomplished. During in-situ heating U-10Zr and U-20Zr alloys up to 810 °C, selected area diffraction (SAD) patterns were observed as the structure evolved up to ~690 °C and the expected α-U → β-U phase transformation at 662 °C was never observed. For the temperature range of the (α-U, γ2) phase region, phase transformation driven diffusion was observed as uranium moved into Zr-rich phase matrix in U-20Zr alloy; this was noted as nonuniform bridging of adjacent phase lamellae in the alloy. From the irradiation tests, nano-scale voids were discovered to be evenly distributed over several micrometers in U-40Zr alloys. For the alloys irradiated at the fluences of 1 × 10^(16) and 5 × 10^(16) ions/cm^(2), estimated void densities were proportional to the irradiation doses, (250 ± 40) and (1460 ± 30) /μm^(2), while void sizes were fairly constant, (6.0 ± 1.5) and (5.2 ± 1.2) nm, respectively. Measured data could be foundational inputs to the further development of a semi-empirical metal fuel performance model.
10

Engineering nanomaterials with enhanced functionality

Li, Shanghua January 2006 (has links)
<p>This thesis deals with the engineering of novel nanomaterials, particularly nanocomposites and nanostructured surfaces with enhanced functionalities. The study includes two parts; in the first part, an in situ sol-gel polymerization approach is used for the synthesis of polymer-inorganic hybrid material and its exceptional transparent UV-shielding effect has been investigated. In the second part, electrodeposition process has been adapted to engineer surfaces and the boiling performance of the fabricated nanostructured surfaces is evaluated.</p><p>In the first part of the work, polymer-inorganic hybrid materials composed of poly(methylmethacrylate) (PMMA) and zinc compounds were prepared by in situ sol-gel transition polymerization of zinc complex in PMMA matrix. The immiscibility of heterophase of solid organic and inorganic constituents was significantly resolved by an in situ sol-gel transition polymerization of ZnO nanofillers within PMMA in the presence of dual functional agent, monoethanolamine, which provided strong secondary interfacial interactions for both complexing and crosslinking of constituents.</p><p>In the second part of the work, nanoengineering on the surface of copper plates has been performed in order to enhance the boiling heat transfer coefficient. Micro-porous surfaces with dendritic network of copper nanoparticles have been obtained by electrodeposition with dynamic templates. To further alter the grain size of the dendritic branches, the nanostructured surfaces underwent a high temperature annealing treatment.</p><p>Comprehensive characterization methods of the polymer-inorganic hybrid materials and nanoengineered surfaces have been undertaken. XRD, 1H NMR, FT-IR, TGA, DSC, UV-Vis, ED, SEM, TEM and HRTEM have been used for basic physical properties. Pool boiling tests were performed to evaluate the boiling performance of the electrodeposited nanostructured micro-porous structures.</p><p>The homogeneous PZHM exhibited enhanced UV-shielding effects in the entire UV range even at very low ZnO content of 0.02 wt%. Moreover, the relationship between band gap and particle size of incorporated ZnO by sol-gel process was in good agreement with the results calculated from the effective mass model between bandgap and particle size. The fabricated enhanced surface has shown an excellent performance in nucleate boiling. At heat flux of 1 W/cm2, the heat transfer coefficient is enhanced over 15 times compared to a plain reference surface. A model has been presented to explain the enhancement based on the structure characteristics.</p>

Page generated in 0.0702 seconds