• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 6
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Scalable processing and integration of 2D materials and devices

Torres Alonso, Elías January 2018 (has links)
Due to its truly two dimensional (2D) character and its particular lattice, single layer graphene (SLG) possesses exceptional properties: it is semimetallic, transparent, strong yet flexible ... Complementary features such as the insulating character of hexagonal boron nitride (h-BN) and semiconducting properties of transition metal dichalcogenides (TMDs) enable the whole spectrum of electronic devices to be built with combinations of these 2D materials. Due to this and the ease of exfoliation with a sticky tape, a vast amount of research was sparked. The mechanical exfoliation method, however, is only suitable for novel or proof-of-concept devices. The trend nowadays in electronics is towards transparent, lightweight, flexible, embedded smart devices and sensors in everyday objects such as windows and mirrors, garments, windshields, car seats, parachutes...These demands are already met inherently by these new materials, thus the challenges remaining are within their synthesis, deposition and processing, where more scalable ways of production and device fabrication need to be developed. This thesis explores innovative approaches using established techniques that aim to bridge the gap between proof-of-concept devices and real applications of 2D materials in future commercial level technologies. Methods to create graphene and engineer its properties are employed with a special focus on scalability and adaptability towards the industry. These graphene materials have been processed using pioneering schemes to create different optoelectronic devices and sensors. The techniques employed here for synthesis, transfer and deposition, device processing and characterization of graphene and derivatives, are suitable for their use in large manufacturing and mass-production. Depending on the application envisaged, different materials are used and optimize in order to balance good performance, cost-effectiveness and suitability/scalability of the process for the specific target the device was designed for.
2

Predicting Rheology Of UV-Curable Nanoparticle Ink Components And Compositions For Inkjet Additive Manufacturing

Lutz, Cameron D 01 June 2024 (has links) (PDF)
Inkjet additive manufacturing is the next step toward ubiquitous manufacturing by enabling multi-material printing that can exhibit various mechanical, electronic, and thermal properties. These characteristics are realized in the careful formulation of the inks and their functional materials, but there are many constraints that need to be satisfied to allow optimal jetting performance and build quality when used in an inkjet 3-D printer. Previous research has addressed the desirable rheology characteristics to enable stable drop formation and how the metallic nanoparticles affect the viscosity of inks. The contending goals of increasing nanoparticle-loading to improve material deposition rates while trying to maintain optimal flow dynamics is the closely held trade secret in formulating these inkjet compositions. We use data from previous experiments and the CRC Handbook of Chemistry and Physics to train machine learning regression models to predict the relevant factors of inkjet printability at a standardized temperature of 25ºC: viscosity, surface tension, and density. These models were used to predict the rheological factors of the main components of a UV-curable inkjet ink formulation: UV-curable monomers and oligomers, photoinitiators, dispersants, and humectants. This paper compares the relative performance of five machine learning algorithms to assess the effectiveness of each approach for chemoinformatics regression tasks.
3

Control of Dynamic DNA Origami Mechanisms Using Integrated Functional Components

Miller, Carl A. 20 May 2015 (has links)
No description available.
4

DNA Origami Mechanisms and Machines

Marras, Alexander Edison 25 July 2013 (has links)
No description available.
5

Engineering nanomaterials with enhanced functionality

Li, Shanghua January 2006 (has links)
<p>This thesis deals with the engineering of novel nanomaterials, particularly nanocomposites and nanostructured surfaces with enhanced functionalities. The study includes two parts; in the first part, an in situ sol-gel polymerization approach is used for the synthesis of polymer-inorganic hybrid material and its exceptional transparent UV-shielding effect has been investigated. In the second part, electrodeposition process has been adapted to engineer surfaces and the boiling performance of the fabricated nanostructured surfaces is evaluated.</p><p>In the first part of the work, polymer-inorganic hybrid materials composed of poly(methylmethacrylate) (PMMA) and zinc compounds were prepared by in situ sol-gel transition polymerization of zinc complex in PMMA matrix. The immiscibility of heterophase of solid organic and inorganic constituents was significantly resolved by an in situ sol-gel transition polymerization of ZnO nanofillers within PMMA in the presence of dual functional agent, monoethanolamine, which provided strong secondary interfacial interactions for both complexing and crosslinking of constituents.</p><p>In the second part of the work, nanoengineering on the surface of copper plates has been performed in order to enhance the boiling heat transfer coefficient. Micro-porous surfaces with dendritic network of copper nanoparticles have been obtained by electrodeposition with dynamic templates. To further alter the grain size of the dendritic branches, the nanostructured surfaces underwent a high temperature annealing treatment.</p><p>Comprehensive characterization methods of the polymer-inorganic hybrid materials and nanoengineered surfaces have been undertaken. XRD, 1H NMR, FT-IR, TGA, DSC, UV-Vis, ED, SEM, TEM and HRTEM have been used for basic physical properties. Pool boiling tests were performed to evaluate the boiling performance of the electrodeposited nanostructured micro-porous structures.</p><p>The homogeneous PZHM exhibited enhanced UV-shielding effects in the entire UV range even at very low ZnO content of 0.02 wt%. Moreover, the relationship between band gap and particle size of incorporated ZnO by sol-gel process was in good agreement with the results calculated from the effective mass model between bandgap and particle size. The fabricated enhanced surface has shown an excellent performance in nucleate boiling. At heat flux of 1 W/cm2, the heat transfer coefficient is enhanced over 15 times compared to a plain reference surface. A model has been presented to explain the enhancement based on the structure characteristics.</p>
6

Engineering nanomaterials with enhanced functionality

Li, Shanghua January 2006 (has links)
This thesis deals with the engineering of novel nanomaterials, particularly nanocomposites and nanostructured surfaces with enhanced functionalities. The study includes two parts; in the first part, an in situ sol-gel polymerization approach is used for the synthesis of polymer-inorganic hybrid material and its exceptional transparent UV-shielding effect has been investigated. In the second part, electrodeposition process has been adapted to engineer surfaces and the boiling performance of the fabricated nanostructured surfaces is evaluated. In the first part of the work, polymer-inorganic hybrid materials composed of poly(methylmethacrylate) (PMMA) and zinc compounds were prepared by in situ sol-gel transition polymerization of zinc complex in PMMA matrix. The immiscibility of heterophase of solid organic and inorganic constituents was significantly resolved by an in situ sol-gel transition polymerization of ZnO nanofillers within PMMA in the presence of dual functional agent, monoethanolamine, which provided strong secondary interfacial interactions for both complexing and crosslinking of constituents. In the second part of the work, nanoengineering on the surface of copper plates has been performed in order to enhance the boiling heat transfer coefficient. Micro-porous surfaces with dendritic network of copper nanoparticles have been obtained by electrodeposition with dynamic templates. To further alter the grain size of the dendritic branches, the nanostructured surfaces underwent a high temperature annealing treatment. Comprehensive characterization methods of the polymer-inorganic hybrid materials and nanoengineered surfaces have been undertaken. XRD, 1H NMR, FT-IR, TGA, DSC, UV-Vis, ED, SEM, TEM and HRTEM have been used for basic physical properties. Pool boiling tests were performed to evaluate the boiling performance of the electrodeposited nanostructured micro-porous structures. The homogeneous PZHM exhibited enhanced UV-shielding effects in the entire UV range even at very low ZnO content of 0.02 wt%. Moreover, the relationship between band gap and particle size of incorporated ZnO by sol-gel process was in good agreement with the results calculated from the effective mass model between bandgap and particle size. The fabricated enhanced surface has shown an excellent performance in nucleate boiling. At heat flux of 1 W/cm2, the heat transfer coefficient is enhanced over 15 times compared to a plain reference surface. A model has been presented to explain the enhancement based on the structure characteristics. / QC 20101118

Page generated in 0.0987 seconds