• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • 1
  • Tagged with
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Bayesian optimization with empirical constraints

Azimi, Javad 05 September 2012 (has links)
Bayesian Optimization (BO) methods are often used to optimize an unknown function f(���) that is costly to evaluate. They typically work in an iterative manner. In each iteration, given a set of observation points, BO algorithms select k ��� 1 points to be evaluated. The results of those points are then added to the set of observations and the procedure is repeated until a stopping criterion is met. The goal is to optimize the function f(���) with a small number of experiment evaluations. While this problem has been extensively studied, most existing approaches ignored some real world constraints frequently encountered in practical applications. In this thesis, we extend the BO framework in a number of important directions to incorporate some of these constraints. First, we introduce a constrained BO framework where instead of selecting a precise point at each iteration, we request a constrained experiment that is characterized by a hyper-rectangle in the input space. We introduce efficient sequential and non-sequential algorithms to select a set of constrained experiments that best optimize f(���) within a given budget. Second, we introduce one of the first attempts in batch BO where instead of selecting one experiment at each iteration, a set of k > 1 experiments is selected. This can significantly speedup the overall running time of BO. Third, we introduce scheduling algorithms for the BO framework when: 1) it is possible to run concurrent experiments; 2) the durations of experiments are stochastic, but with a known distribution; and 3) there is a limited number of experiments to run in a fixed amount of time. We propose both online and offline scheduling algorithms that effectively handle these constraints. Finally, we introduce a hybrid BO approach which switches between the sequential and batch mode. The proposed hybrid approach provides us with a substantial speedup against sequential policies without significant performance loss. / Graduation date: 2013
2

Active visual category learning

Vijayanarasimhan, Sudheendra 02 June 2011 (has links)
Visual recognition research develops algorithms and representations to autonomously recognize visual entities such as objects, actions, and attributes. The traditional protocol involves manually collecting training image examples, annotating them in specific ways, and then learning models to explain the annotated examples. However, this is a rather limited way to transfer human knowledge to visual recognition systems, particularly considering the immense number of visual concepts that are to be learned. I propose new forms of active learning that facilitate large-scale transfer of human knowledge to visual recognition systems in a cost-effective way. The approach is cost-effective in the sense that the division of labor between the machine learner and the human annotators respects any cues regarding which annotations would be easy (or hard) for either party to provide. The approach is large-scale in that it can deal with a large number of annotation types, multiple human annotators, and huge pools of unlabeled data. In particular, I consider three important aspects of the problem: (1) cost-sensitive multi-level active learning, where the expected informativeness of any candidate image annotation is weighed against the predicted cost of obtaining it in order to choose the best annotation at every iteration. (2) budgeted batch active learning, a novel active learning setting that perfectly suits automatic learning from crowd-sourcing services where there are multiple annotators and each annotation task may vary in difficulty. (3) sub-linear time active learning, where one needs to retrieve those points that are most informative to a classifier in time that is sub-linear in the number of unlabeled examples, i.e., without having to exhaustively scan the entire collection. Using the proposed solutions for each aspect, I then demonstrate a complete end-to-end active learning system for scalable, autonomous, online learning of object detectors. The approach provides state-of-the-art recognition and detection results, while using minimal total manual effort. Overall, my work enables recognition systems that continuously improve their knowledge of the world by learning to ask the right questions of human supervisors. / text
3

Apprentissage actif sous contrainte de budget en robotique et en neurosciences computationnelles. Localisation robotique et modélisation comportementale en environnement non stationnaire / Active learning under budget constraint in robotics and computational neuroscience. Robotic localization and behavioral modeling in non-stationary environment

Aklil, Nassim 27 September 2017 (has links)
La prise de décision est un domaine très étudié en sciences, que ce soit en neurosciences pour comprendre les processus sous tendant la prise de décision chez les animaux, qu’en robotique pour modéliser des processus de prise de décision efficaces et rapides dans des tâches en environnement réel. En neurosciences, ce problème est résolu online avec des modèles de prises de décision séquentiels basés sur l’apprentissage par renforcement. En robotique, l’objectif premier est l’efficacité, dans le but d’être déployés en environnement réel. Cependant en robotique ce que l’on peut appeler le budget et qui concerne les limitations inhérentes au matériel, comme les temps de calculs, les actions limitées disponibles au robot ou la durée de vie de la batterie du robot, ne sont souvent pas prises en compte à l’heure actuelle. Nous nous proposons dans ce travail de thèse d’introduire la notion de budget comme contrainte explicite dans les processus d’apprentissage robotique appliqués à une tâche de localisation en mettant en place un modèle basé sur des travaux développés en apprentissage statistique qui traitent les données sous contrainte de budget, en limitant l’apport en données ou en posant une contrainte de temps plus explicite. Dans le but d’envisager un fonctionnement online de ce type d’algorithmes d’apprentissage budgétisé, nous discutons aussi certaines inspirations possibles qui pourraient être prises du côté des neurosciences computationnelles. Dans ce cadre, l’alternance entre recherche d’information pour la localisation et la décision de se déplacer pour un robot peuvent être indirectement liés à la notion de compromis exploration-exploitation. Nous présentons notre contribution à la modélisation de ce compromis chez l’animal dans une tâche non stationnaire impliquant différents niveaux d’incertitude, et faisons le lien avec les méthodes de bandits manchot. / Decision-making is a highly researched field in science, be it in neuroscience to understand the processes underlying animal decision-making, or in robotics to model efficient and rapid decision-making processes in real environments. In neuroscience, this problem is resolved online with sequential decision-making models based on reinforcement learning. In robotics, the primary objective is efficiency, in order to be deployed in real environments. However, in robotics what can be called the budget and which concerns the limitations inherent to the hardware, such as computation times, limited actions available to the robot or the lifetime of the robot battery, are often not taken into account at the present time. We propose in this thesis to introduce the notion of budget as an explicit constraint in the robotic learning processes applied to a localization task by implementing a model based on work developed in statistical learning that processes data under explicit constraints, limiting the input of data or imposing a more explicit time constraint. In order to discuss an online functioning of this type of budgeted learning algorithms, we also discuss some possible inspirations that could be taken on the side of computational neuroscience. In this context, the alternation between information retrieval for location and the decision to move for a robot may be indirectly linked to the notion of exploration-exploitation compromise. We present our contribution to the modeling of this compromise in animals in a non-stationary task involving different levels of uncertainty, and we make the link with the methods of multi-armed bandits.

Page generated in 0.0487 seconds