• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 26
  • 9
  • 5
  • 4
  • 4
  • 3
  • 1
  • Tagged with
  • 62
  • 62
  • 9
  • 8
  • 8
  • 8
  • 8
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Toward the Synthesis of Designed Metal-Organic Materials

Brant, Jacilynn A 10 July 2008 (has links)
Metal-Organic Materials (MOMs) are an emerging class of crystalline solids that offer the potential for utilitarian design, as one of the greatest scientific challenges is to design functional materials with foreordained properties and eventually synthesize custom designed compounds for projected applications. Polytopic organic ligands with accessible heteroatom donor groups coordinate to single-metal ions and/or metal clusters to generate networks of various dimensionality. Advancements in synthesis of solid-state materials have greatly impacted many areas of research, including, but not limited to, communication, computing, chemical manufacturing, and transportation. Design approaches based on building blocks provide a means to conquer the challenge of constructing premeditated solid-state materials. Single-metal ion-based molecular building blocks, MNx(CO2)y+x, constructed from heterochelating ligands offer a new route to rigid and predictable MOMs. Specific metal bonds are considered responsible for directing the geometry or topology of metal-organic assemblies; these bond geometries constitute the building units, MNxOy. When these building units are connected through appropriate angles, nets or polyhedra can be targeted and synthesized, such as metal-organic cubes and Kagomé lattices. MNx(CO2)y+x MBBs can result in MN2O2 building units with square planar or see-saw geometries, depending on the mode of chelation. Using a 6-coordinate metal and a heterochelating ligand with bridging functionality, TBUs can be targeted for the synthesis of valuable networks, such as Zeolite-like Metal-Organic Frameworks (ZMOFs). Zeolitic nets, constructed from tetrahedral nodes connected through ~145° angles, are valuable targets in MOMs, as they inherently contain cavities and/or channel systems and lack interpenetration. Other design approaches have been explored for the design of ZMOFs from TBUs, such as the use of hexamethylenetetramine (HMTA) as an organic TBU. When this TBU coordinates to a 2-connected metal with appropriate angles, zeolite-like nets rare to metal-organic crystal chemistry can be accessed. Additionally, MNx(CO2)y MBBs have been used to construct metal-organic polyhedra (MOPs), used as supermolecular building blocks (SBBs), that can be peripherally functionalized and ultimately extended into threedimensional ZMOFs. Rational synthesis, mainly based on building block approaches, advances bridging the gap between design and construction of solid-state materials. However, some challenges still arise for the establishment of reaction conditions for the formation of intended MBBs and thus targeted frameworks.
12

Total Synthesis Of Bio-Active Natural Products Microcarpalide, Synargentolide A, Jaspine B And Anamarine

Penchalaiah, Kamala 08 1900 (has links) (PDF)
The thesis entitled “Total synthesis of bio-active natural products microcarpalide, synargentolide A, jaspine B and anamarine.” demonstrates the utility of chiral pool tartaric acid as the source in the synthesis of bio-active natural products. The thesis was divided into four sections. Section I of the thesis deals with the enantiodivergent synthesis of microcarpalide from tartaric acid. Microcarpalide is a 10-membered lactone of polyketide origin isolated from the fermentation broths of an unidentified endophytic fungi, found to be weekly cytotoxic to mammalian cells and acts as a microfilament discrupting agent. Stereoselective approach for the synthesis of ()-microcarpalide is described from D- and L-tartaric acids, while enantiodivergent approach for the synthesis of both enantiomers is described from L-tartaric acid using ring closing metathesis as the Scheme 2: Enantiodivergent total synthesis of microcarpalide. In section II of the thesis, stereoselective synthesis of synargentolide A is described. Synargentolide A is a polyhydroxy -lactone, isolated from Syncolostemon argenteus, which was founf to exhibit cytotoxic and antitumor properties. Stereoselective synthesis of synargentolide A was accomplished, starting from L-tartaric acid employing, Keck and Brown allylations and ring closing metathesis, as the key steps. Scheme 3: Stereoselective total synthesis of ()-synargentolide A. Section III of the thesis deals with the synthesis of ()-jaspine B. Pachastrissamine (jaspine B), is an anhydrophytoshingosine derivative, isolated from marine sponges Pachastrissa and Jaspis speces. Pachastrissamine was shown to exhibit cytotoxicity (IC 50 0.01 g/mL) against P388, A549, HT29, and MEL28 cell lines. Enantioselective synthesis of jaspine B is accomplished from L-tartaric acid employing, Keck allylation, acid mediated formation of tetrahydrofuran, and olefin cross metathesis as the key reactions. In section IV of the thesis, enantioselective synthesis of ()-anamarine is described. Anamarine is a polyhydroxy -lactone isolated from the flowers and leaves of Peruvian hyptis, possessing cytotoxicity against human tumor cell lines. Enantioselective synthesis of -anamarine is accomplishedelaboration of hitherto unknown -keto phosphonate derived from tartaric acid amide. In an appendix for the thesis, enantiodivergent synthesis for 4-siloxy-pent-2-enone was described. The usefulness of asymmetric aldol reaction is exemplifiedin this section. hydroxy amide synthesized from crotonaldehyde is suitably elaborated to the diene which on RCM yielded 4-silyloxycyclopent-2-enone. Further synthetic modification of this compound afforded the other enantiomer. Scheme 6: Enantiodivergent synthesis of hydroxy cyclopentenones. (For structural formula pl the abstract pdf file)
13

Design And Synthesis Of New Supramolecular Building Blocks Based On Oligo-bodipy Dyes

Bilgic, Bora 01 March 2008 (has links) (PDF)
We have designed and synthesized a fluorescent, self-assembled molecular square containing a highly fluorescent well known flurophore boradiazaindacene (BODIPY) dye. Pt(II) complexes were used to hold together BODIPY derivatives and give the right angle to form the square structure. Usage of BODIPY fluorophore is very important on such structures because its variety of superior properties. BODIPY is a well studied fluorophore in our group and it is known that this self assembled square can be easily modified to any area of use it is needed.
14

Using blocks to construct 3D shapes and create transformation animations

Liu, Lu 25 April 2007 (has links)
The objective of this research is to develop methods by which we can use blocks to approximate the shapes of 3D objects and to generate shape transformation animations. Two graphic tools are developed. One assists the animator in constructing 3D shapes with bricks of different sizes and matching up the different shapes. The other tool helps the animator generate a transformation animation of those bricks. Using polygon shape data, these tools can procedurally place the bricks and control their animation. Several different methods for animation are introduced. Those methods provide different ways to generate animation paths of the blocks. The no path animation and the straight path animation are easy for the animator to create and the animation time is easily controlled. The flocking animation will provide more interesting effect.
15

Structural Diversity in Crystal Chemistry: Rational Design Strategies Toward the Synthesis of Functional Metal-Organic Materials

Cairns, Amy J. 04 June 2010 (has links)
Metal-Organic Materials (MOMs) represent an important class of solid-state crystalline materials. Their countless attractive attributes make them uniquely suited to potentially resolve many present and future utilitarian societal challenges ranging from energy and the environment, all the way to include biology and medicine. Since the birth of coordination chemistry, the self-assembly of organic molecules with metal ions has produced a plethora of simple and complex architectures, many of which possess diverse pore and channel systems in a periodic array. In its infancy however this field was primarily fueled by burgeoning serendipitous discoveries, with no regard to a rational design approach to synthesis. In the late 1980s, the field was transformed when the potential for design was introduced through the seminal studies conducted by Hoskins and Robson who transcended the pivotal works of Wells into the experimental regime. The construction of MOMs using metal-ligand directed assembly is often regarded as the origin of the molecular building block (MBB) approach, a rational design strategy that focuses on the self-assembly of pre-designed MBBs having desired shapes and geometries to generate structures with intended topologies by exploiting the diverse coordination modes and geometries afforded by metal ions and organic molecules. The evolution of the MBB approach has witnessed tremendous breakthroughs in terms of scale and porosity by simply replacing single metal ions with more rigid inorganic metal clusters whilst preserving the inherent modularity and essential geometrical attributes needed to construct target networks for desired applications. The work presented in this dissertation focuses upon the rational design and synthesis of a diverse collection of open frameworks constructed from pre-fabricated rigid inorganic MBBs (i.e. [M(CO2)4], [M2(RCO2)4], [M3O(RCO2)6], MN3O3, etc), supermolecular building blocks (SBBs) and 3-, 4- and 6-connected organic MBBs. A systematic evaluation concerning the effect of various structural parameters (i.e. pore size and shape, metal ion, charge, etc) on hydrogen uptake and the relative binding affinity of H2-MOF interactions for selected systems is provided.
16

Synthesis and anion binding studies of pyrazole and biimidazole-containing receptors

Rubin, Bobbi Linden 01 February 2011 (has links)
This dissertation covers two different topics within the area of diaza-containing aromatic five-membered rings: biimidazoles and pyrazoles. With the exception that both these subject matters are explored in the context of developing new anion binding agents, the background and research associated with these two topics are vastly different and will be treated as such. Chapter two, dealing with biimidazoles, focuses solely on expanded porphyrins, while chapter three discusses pyrazoles as potential macrocyclic building blocks and as diamidic-functionalized anion binders. The first chapter covers several different topics in order to put into perspective the diverse subject matter presented in this dissertation. It begins with an overview of some well-known expanded porphyrins. The synthesis, classical applications, and newer studies of the biimidazole synthetic efforts are then described. The third part of the introductory chapter covers the synthesis and applications of pyrazoles. The use of heterocycles with more than one heteroatom in the construction of expanded porphyrins is just beginning to be explored, and is the focus of chapter two. The synthesis of a novel expanded porphyrin is described and its applications are investigated. More specifically, chapter two covers the synthesis of several biimidazole dialdehydes and their condensation with three 3,3',4,4'-functionalized bis-[alpha]-free bipyrroles to form a series of novel macrocycles. The characterization of these new compounds has been investigated and is discussed in detail. Also presented are preliminary studies of their anion binding properties. Pyrazoles, the subject of chapter three, are another overlooked class of potential building blocks in the area of expanded porphyrins and molecular recognition chemistry. Pyrazoles have rarely been reported in the literature as being part of a larger molecular framework. Until this work, their anion binding potential had remained unexplored. Thus, the attempted incorporation of a pyrazole fragment into an expanded porphyrin framework is described. Second, and more significantly, the design, synthesis, and anion binding properties of a new series of diamidic pyrazoles are reported. / text
17

Solvolyse des lignines : production de synthons aromatiques de faibles masses / Solvolysis of lignins : production of low molecular weight aromatic building blocks

Bouxin, Florent 15 February 2011 (has links)
Les lignines ne sont pas suffisamment considérées dans les procédés de bioraffinerie. Pourtant, elles sont une source abondante de synthons aromatiques, et éléments essentiels de la rentabilité de transformation des lignocelluloses. A ce jour, les perspectives de production de synthons à partir des lignines se heurtent aux réactions de condensations des lignines, limitant leurs conversions en produits de faibles masses. Cette étude nous a permis de cerner les conditions propices à l’hydrolyse et/ou aux condensations grâce à l’étude de différentes lignines modèles soumises aux conditions d’acidolyse. D’une part, les conditions propices à l’hydrolyse des liaisons -O-4 sont l’utilisation d’une catalyse homogène (HCl), pour des températures comprises entre 120 et 140°C et une acidité de l’ordre de 0.05 M. A l’inverse, l’emploi d’une catalyse hétérogène (Montmorillonite K10) est peu efficace car elle doit s’affranchir des phénomènes d’adsorption du substrat tout en lui permettant d’accéder à ses sites actifs. D’autre part, les réactions de condensation secondaires sont exacerbées par l’emploi de l’argile de Montmorillonite, mais aussi par l’augmentation de l’acidité et de la température, elles mêmes nécessaires pour une bonne hydrolyse. La substitution de l’alcool coniférylique par le coniféraldéhyde permet de minimiser ces condensations secondaires du fait de sa forte stabilité dans les conditions d’acidolyse. Toutefois, l’incorporation de ce type de précurseur dans les lignines provoque une diminution de la fréquence des liaisons -O-4. Cette réduction du potentiel d’hydrolyse des lignines est compensée par l’exacerbation des réactions de rétroaldolisation. Pour les condensations primaires, l’acidolyse des lignines pures -O-4 nous permet d’affirmer que celles-ci, constantes face à l’augmentation de la concentration en acide et en nucléophiles aromatiques, seraient plutôt de type intramoléculaire. / Lignins are not sufficiently considered in the biorefinery processes. However, they are a rich source of aromatic building blocks, and essential elements of lignocellulose processing viability. Although the production prospects of building blocks from lignins exist, their strong affinities for condensation reactions limit the conversion into low molecular weight products. This study allowed us to identify hydrolysis or condensation suitable conditions by studying different models lignins subjected to acidolysis conditions. On the one hand, suitable conditions for the -O-4 bonds hydrolysis are the use of homogeneous catalysis (HCl), for temperatures and HCl concentration ranged from 120 to 140 ° C and from 0.05 M to 0.1M. In contrast, the use of heterogeneous catalysis (Montmorillonite K10) is inefficient because it has to overcome the substrate adsorption and allow an access to its active sites. On the other hand, secondary condensation reactions are exacerbated by the use of Montmorillonite clay, but also by acidity and temperature increases, themselves necessary for an efficient hydrolysis.The substitution of coniferyl alcohol by coniferaldehyde minimizes these condensation reactions due to its high stability in acid conditions. However, the incorporation of this precursor in lignin leads to a decrease of -O-4 bond frequency. This reduction of lignin hydrolysis potential is compensated for the exacerbation of retroaldolisation reactions. About primary condensations, pure -O-4 lignins acidolysis allows us to claim that this kind of reactions, unchanged at the hand of acid or aromatic nuclei concentration increase, are intramolecular.
18

1-Bromo-1-lithioethene as a building block for organic synthesis

Novikov, Yehor January 2005 (has links)
No description available.
19

BUILDING BLOCKS AND THEIR EFFECTS ON POLYMER AEROGEL PROPERTIES

Gu, Senlong 04 October 2016 (has links)
No description available.
20

Modeling, Analysis, and Design of Distributed Power Electronics System Based on Building Block Concept

Xing, Kun 09 July 1999 (has links)
The basic Power Electronics Building Block (PEBB) configurations are identified and conceptual PEBB modules are constructed and tested. Using the INCA (Inductance Calculator) parasitic extraction and the Saber circuit simulation software, the microscopic relationships between the parasitics of the packaging layout and their circuit electrical effects are cross-examined. The PEBB module with advanced packaging techniques is characterized in comparison with the wire-bond module. The soft-switching techniques are evaluated for PEBB applications. The Zero-Current-Transition (ZCT) is proved better because the parasitics in the power current flow path are absorbed into the resonant soft-switching operation. This makes the PEBBs insensitive to system integration. Based on the building block concept, the discrete and large signal average models are developed for simulation, design, and analysis of large-scale PEBB-based systems. New average models are developed for half-bridge PEBB module and Space Vector Modulation (SVM). These models keep the exact information of the discontinuous SVM and the common mode component of the three-phase system. They can be used to construct the computer models of a power electronics system the same as the modularized hardware and perform time domain simulations with very fast speed. Further more, even though the system is modeled based on modularized concept on the ABC coordinates, it can be used to perform small signal analysis on the DQ coordinates as well. Based on the developed models, the system-level interactions in integrated systems are investigated. Three interaction scenarios are presented: (1) the zero-sequence circulation current in paralleled three-phase rectifiers caused by the interleaved discontinuous SVM, (2) the load and source interactions caused by unbalanced load and small signal impedance overlap, and (3) the combined common mode noise caused by both front-end PWM rectifiers and load inverters. The interaction phenomena and mitigation methods are demonstrated through hardware testbed system. The concept of dc bus conditioning is proposed. The bus conditioner is a bi-directional dc/dc converter programmed as a current controlled current source, which shunts the large signal ac current, which otherwise goes to the dc bus, into an isolated energy storage component. In addition to alleviate the source and load interactions, it increases the load impedance/decreases the bus impedance and provides more stability margins to the distribution system. The dc bus conditioner concept and its functions are demonstrated through system simulation and preliminary hardware experiment. / Ph. D.

Page generated in 0.0526 seconds