• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • 1
  • Tagged with
  • 8
  • 8
  • 8
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Toward the Synthesis of Designed Metal-Organic Materials

Brant, Jacilynn A 10 July 2008 (has links)
Metal-Organic Materials (MOMs) are an emerging class of crystalline solids that offer the potential for utilitarian design, as one of the greatest scientific challenges is to design functional materials with foreordained properties and eventually synthesize custom designed compounds for projected applications. Polytopic organic ligands with accessible heteroatom donor groups coordinate to single-metal ions and/or metal clusters to generate networks of various dimensionality. Advancements in synthesis of solid-state materials have greatly impacted many areas of research, including, but not limited to, communication, computing, chemical manufacturing, and transportation. Design approaches based on building blocks provide a means to conquer the challenge of constructing premeditated solid-state materials. Single-metal ion-based molecular building blocks, MNx(CO2)y+x, constructed from heterochelating ligands offer a new route to rigid and predictable MOMs. Specific metal bonds are considered responsible for directing the geometry or topology of metal-organic assemblies; these bond geometries constitute the building units, MNxOy. When these building units are connected through appropriate angles, nets or polyhedra can be targeted and synthesized, such as metal-organic cubes and Kagomé lattices. MNx(CO2)y+x MBBs can result in MN2O2 building units with square planar or see-saw geometries, depending on the mode of chelation. Using a 6-coordinate metal and a heterochelating ligand with bridging functionality, TBUs can be targeted for the synthesis of valuable networks, such as Zeolite-like Metal-Organic Frameworks (ZMOFs). Zeolitic nets, constructed from tetrahedral nodes connected through ~145° angles, are valuable targets in MOMs, as they inherently contain cavities and/or channel systems and lack interpenetration. Other design approaches have been explored for the design of ZMOFs from TBUs, such as the use of hexamethylenetetramine (HMTA) as an organic TBU. When this TBU coordinates to a 2-connected metal with appropriate angles, zeolite-like nets rare to metal-organic crystal chemistry can be accessed. Additionally, MNx(CO2)y MBBs have been used to construct metal-organic polyhedra (MOPs), used as supermolecular building blocks (SBBs), that can be peripherally functionalized and ultimately extended into threedimensional ZMOFs. Rational synthesis, mainly based on building block approaches, advances bridging the gap between design and construction of solid-state materials. However, some challenges still arise for the establishment of reaction conditions for the formation of intended MBBs and thus targeted frameworks.
2

Crystal Engineering of Molecular and Ionic Cocrystals

Ong, Tien Teng 01 January 2011 (has links)
Solubility enhancement of poorly-soluble active pharmaceutical ingredients (APIs) remains a scientific challenge and poses a practical issue in the pharmaceutical industry. The emergence of pharmaceutical cocrystals has contributed another dimension to the diversity of crystal forms available at the disposal of the pharmaceutical scientist. That pharmaceutical cocrystals are amenable to the design principles of crystal engineering means that the number of crystal forms offered by pharmaceutical cocrystals is potentially greater than the combined numbers of polymorphs, salts, solvates and hydrates for an API. The current spotlight and early-onset dissolution profile ("spring-and-parachute" effect) exhibited by certain pharmaceutical cocrystals draw attention to an immediate question: How big is the impact of cocrystals on aqueous solubility? The scientific literature and in-house data on pharmaceutical cocrystals that are thermodynamically stable in water are reviewed and analyzed for trends in aqueous solubility and melting point between the cocrystal and the cocrystal formers. There is poor correlation between the aqueous solubility of cocrystal and cocrystal former with respect to the API. The log of the aqueous solubility ratio between cocrystal and API has a poor correlation with the melting point difference between cocrystal and API. Structure-property relationships between the cocrystal and the cocrystal formers remain elusive and the actual experiments are still necessary to investigate the desired physicochemical properties. Crystal form (cocrystals, polymorphs, salts, hydrates and solvates) diversity is and will continue to be a contentious issue for the pharmaceutical industry. That the crystal form of an API dramatically impacts its aqueous solubility (a fixed thermodynamic property) is illustrated by the histamine H2-receptor antagonist ranitidine hydrochloride and HIV protease inhibitor ritonavir. For more than a century, the dissolution rate of a solid has been shown to be directly dependent on its solubility, cçterîs paribus. A century later, it remains impossible to predict the properties of a solid, given its molecular structure. If delivery or absorption of an API are limited by its aqueous solubility, aqueous solubility then becomes a critical parameter linking bioavailability and pharmacokinetics of an API. Since the majority of APIs are Biopharmaceutical Classification System (BCS) Class II (low solubility and high permeability) compounds, crystal form screening, optimization and selection have thus received more efforts, attention and investment. Given that the dissolution rate, aqueous solubility and crystal form of an API are intricately linked, it remains a scientific challenge to understand the nature of crystal packing forces and their impact upon physicochemical properties of different crystal forms. Indeed, the selection of an optimal crystal form of an API is an indispensable part of the drug development program. The impact of cocrystals on crystal form diversity is addressed with molecular and ionic targets in ellagic acid and lithium salts. A supramolecular heterosynthon approach was adopted for crystal form screening. Crystal form screening of ellagic acid yields molecular cocrystals, cocrystal solvates/hydrates and solvates. Crystal form screening of lithium salts (chloride, bromide and nitrate salts) afforded ionic cocrystals and cocrystal hydrates.
3

Estudo da viabilidade de materiais metal-orgânicos como sorvente alternativo para a extração de pesticidas em mamão (Carica papaya) por MSPD / FEASIBILITY STUDY OF METAL-ORGANIC MATERIALS AS ALTERNATIVE TO SORBENT EXTRACTION OF PESTICIDES IN PAPAYA (CARICA PAPAYA) BY MAPS.

Barreto, Alysson Santos 15 March 2011 (has links)
Conselho Nacional de Desenvolvimento Científico e Tecnológico / Pesticides of different chemical and toxicological classes are used to control the pest attack on crops. However, treatment with these substances leave residues in the environment or the product itself, when used extensively, disregarding the ceilings set by law. The materials conventionally used in steps of extraction and preconcentration of pesticides in environmental matrices have a limited adsorption capacity or have low selectivity for specific analytes. Therefore, this study investigated the feasibility of metal-organic materials (MMO) as an alternative sorbent for the extraction of contaminants in papaya (Carica papaya). Such compounds form a new class of hybrid materials organic-inorganic porous stable, ordered, high surface area, which enables its application as pre-concentrators analytes and also in gas storage, molecular recognition and adsorption. The molecular formulas suggested for metal-organic materials were synthesized ∞[(La0,9Eu0,1)2(DPA)3(H2O)3], for the heteronuclear compound, and ∞[Eu(C14H4O8)(C2O4)3(H2O)2] for the homonuclear compound. The ligand coordination Na4ntc with Eu+3 ion in the homonuclear material occurred through the oxygen atoms of carboxylate groups attached to aromatic ring. In the case of heteronuclear compound, the ligand is coordinated to the metals H2DPA from the carboxylate oxygen atoms and nitrogen of pyridine. The luminescence spectroscopy studies of metal-organic material ∞[Eu(C14H4O8)(C2O4)3(H2O)2], indicated the presence of a single site symmetry around the lanthanide ion. Since the emission spectrum of ∞[(La0,9Eu0,1)2(DPA)3(H2O)3] indicated that the first coordination sphere of the metal has a low point group symmetry and has a single species broadcaster. According to data from X-ray diffraction single-crystal heteronuclear compound crystallized in monoclinic system with space group P21/c. The material formed a microporous threedimensional structure with channels that propagate along the crystallographic c axis. The extraction method developed enabled recovery of the pesticide pyrimethanil (52%). The elution solvent was chosen as ethyl acetate and the ratio matrix: adsorbent used was 1:3 (m / m). / Pesticidas de diferentes grupos químicos e classes toxicológicas são empregados para controlar o ataque das pragas às culturas. Porém, o tratamento com estas substâncias deixa resíduos no ambiente ou no próprio produto, quando utilizado de maneira extensiva, desrespeitando os limites máximos estabelecidos pelas legislações. Os materiais convencionalmente utilizados nas etapas de extração e pré-concentração de pesticidas em matrizes ambientais apresentam uma capacidade de adsorção limitada ou tem baixa seletividade para analitos específicos. Diante destes dados, este trabalho teve como meta básica estudar a viabilidade de materiais metal-orgânicos (MMO) como um sorvente alternativo para a extração de contaminantes em mamão (Carica papaya). Tais compostos formam uma nova classe de materiais híbridos porosos orgânico-inorgânico estáveis, ordenados e com alta área superficial, o que possibilita sua aplicação como pré-concentradores de analitos e também em estocagem de gás, reconhecimento molecular e adsorção. As fórmulas moleculares sugeridas para os materiais metal-orgânicos sintetizados foram ∞[(La0,9Eu0,1)2(DPA)3(H2O)3], para o composto heteronuclear, e ∞[Eu(C14H4O8)(C2O4)3(H2O)2], para o composto homonuclear. Através dos dados dos espectros de IV a coordenação do ligante Na4ntc com o íon Eu+3 no material homonuclear ocorreu através dos átomos de oxigênio dos grupos carboxilatos ligados ao anel aromático. No caso do composto heteronuclear, o ligante H2DPA se coordenou aos metais a partir dos átomos de oxigênio dos carboxilatos e do nitrogênio do anel piridínico. Os estudos de espectroscopia de luminescência do material metal-orgânico [Eu(C14H4O8)(C2O4)3(H2O)2]∞, indicam a presença de um único sítio de simetria em torno do íon lantanídeo. Já o espectro de emissão do ∞[(La0,9Eu0,1)2(DPA)3(H2O)3] evidenciam que a primeira esfera de coordenação do metal possui grupo pontual de baixa simetria e a apresenta uma única espécie emissora. Os dados de difração de raios-X de monocristal o composto heteronuclear indicam que a cristalização ocorre em sistema monoclínico com grupo espacial P21/c. O material formou uma estrutura tridimensional com canais microporosos que se propagam ao longo do eixo c cristalográfico. O método de extração desenvolvido possibilitou recuperação do pesticida pirimetanil (52%). O solvente de eluição escolhido foi o acetato de etila e a proporção matriz:adsorvente utilizada foi 1:3 (m/m).
4

Quantum Chemical Studies for the Engineering of Metal Organic Materials

Rivera Jacquez, Hector Javier 01 January 2015 (has links)
Metal Organic Materials (MOM) are composed of transition metal ions as connectors and organic ligands as linkers. MOMs have been found to have high porosity, catalytic, and optical properties. Here we study the gas adsorption, color change, and non-linear optical properties of MOMs. These properties can be predicted using theoretical methods, and the results may provide experimentalists with guidance for rational design and engineering of novel MOMs. The theory levels used include semi-empirical quantum mechanical calculations with the PM7 Hamiltonian and, Density Functional Theory (DFT) to predict the geometry and electronic structure of the ground state, and Time Dependent DFT (TD-DFT) to predict the excited states and the optical properties. The molecular absorption capacity of aldoxime coordinated Zn(II) based MOMs (previously measured experimentally) is predicted by using PM7 Theory level. The 3D structures were optimized with and without host molecules inside the pores. The absorption capacity of these crystals was predicted to be 8H2 or 3N2 per unit cell. When going beyond this limit, the structural integrity of the bulk material becomes fractured and microcrystals are observed both experimentally and theoretically. The linear absorption properties of Co(II) based complexes are known to change color when the coordination number is altered. In order to understand the mechanism of this color change TD-DFT methods are employed. The chromic behavior of the Co(II) based complexes studied was confirmed to be due to a chain in coordination number that resulted in lower metal to ligand distances. These distances destabilize the occupied metal d orbitals, and as a consequence of this, the metal to ligand transition energy is lowered enough to allow the crystals to absorb light at longer wavelengths. Covalent organic frameworks (COFs) present an extension of MOM principles to the main group elements. The synthesis of ordered COFs is possible by using predesigned structures andcarefully selecting the building blocks and their conditions for assembly. The crystals formed by these systems often possess non-linear optical (NLO) properties. Second Harmonic Generation (SHG) is one of the most used optical processes. Currently, there is a great demand for materials with NLO optical properties to be used for optoelectronic, imaging, sensing, among other applications. DFT calculations can predict the second order hyperpolarizability ?2 and tensor components necessary to estimate NLO. These calculations for the ?2 were done with the use of the Berry's finite field approach. An efficient material with high ?2 was designed and the resulting material was predicted to be nearly fivefold higher than the urea standard. Two-photon absorption (2PA) is another NLO effect. Unlike SHG, it is not limited to acentric material and can be used development of in vivo bio-imaging agents for the brain. Pt(II) complexes with porphyrin derivatives are theoretically studied for that purpose. The mechanism of 2PA enhancement was identified. For the most efficient porphyrin, the large 2PA cross-section was found to be caused by a HOMO-LUMO+2 transition. This transition is strongly coupled to 1PA allowed Q-band HOMO-LUMO states by large transition dipoles. Alkyl carboxyl substituents delocalize the LUMO+2 orbital due to their strong ?-acceptor effect, enhancing transition dipoles and lowering the 2PA transition to the desirable wavelengths range. The mechanism 2PA cross-section enhancement of aminoxime and aldoxime ligands upon metal addition of is studied with TD-DFT methods. This mechanism of enhancement is found to be caused by the polarization of the ligand orbitals by the metal cation. After polarization an increase in ligand to ligand transition dipole moment. This enhancement of dipole moment is related to the increase in 2PA cross-sections.
5

Sintonização de cores de emissão fotoluminescente da rede de coordenação [Bi(HPyr)] dopada com íons TR3+ / Photoluminescent emission color tuning of the coordination network [Bi(HPyr)] doped with RE3+ ions

Cunha, Cesar dos Santos 11 December 2018 (has links)
A rede de coordenação constituída por íons bismuto trivalente e ácido piromelítico (H4Pyr), [Bi(HPyr)], foi utilizada com sucesso como matriz hospedeira para a incorporação in situ dos íons terras raras trivalentes TR3+: Sm3+, Eu3+, Tb3+ e Dy3+. O método de alto rendimento para a síntese permitiu preparar e estudar a pureza de fase e cristalinidade das séries de amostras, acelerando e facilitando a comparação entre os parâmetros de síntese. As técnicas de espectroscopia de absorção no infravermelho, análise elementar e termogravimétrica, microscopia eletrônica de varredura e espectroscopia de energia dispersiva de raios X, bem como a difração de raios X de pó e o refinamento de Le Bail dos compostos indicaram que a dopagem não afetou a estrutura, cristalinidade, morfologia e estabilidade térmica da matriz. O estudo das propriedades espectroscópicas da matriz [Bi(HPyr)] não dopada e dopada com íons TR3+ permitiu a investigação dos processos de sensibilização do íons ativadores TR3+. As propriedades espectroscópicas características do íon Eu3+ foi utilizada para estudar o sítio e ambiente de coordenação dos dopantes por meio dos parâmetros de intensidades experimentais Ωλ (λ: 2 and 4), além do rendimento quântico intrínseco (QEUEU ) do material [Bi(HPyr)] mono dopado com Eu3+. A sintonização da cor de emissão pela mudança da concentração relativa dos íons dopantes é investigada para os sistemas duplamente dopados com os íons Tb3+:Eu3+, Tb3+:Sm3+, Dy3+:Eu3+ e Dy3+:Sm3+. Os sistemas contendo íons Dy3+ apresentam diferentes tonalidades de emissão branca e ampla faixa de temperatura de cor correlata (CCT - 2500 a 7500 K), sendo promissores para o desenvolvimento de dispositivos emissores de luz branca de fase única. / The coordination network consisting of trivalent bismuth ions and pyromellitic acid (H4Pyr), [Bi(HPyr)], was successfully applied as host matrix for in situ incorporation of the trivalent rare earth ions RE3+: Sm3+, Eu3+, Tb3+ and Dy3+. The high-throughput methods for hydrothermal synthesis allowed to prepare and study phase purity and crystallinity of sample series, accelerating and facilitating the comparison between the synthesis parameters. Infrared absorption spectroscopy, elemental and thermogravimetric analysis, scanning electron microscopy and energy-dispersive X-ray spectroscopy, as well as powder X-ray diffraction and the Le Bail refinement of the compounds indicated that doping did not affect the structure, crystallinity, morphology and thermal stability of the matrix. The study of the spectroscopic luminescence properties of the nondoped and doped [Bi(HPyr)] allowed the investigation of the sensitization processes of dopant RE3+ ions. The characteristic spectroscopic properties of the Eu3+ ion were used to study the incorporation site and coordination environment of the dopant by the calculation of the experimental intensity parameters Ωλ (λ: 2 and 4), besides the intrinsic quantum yield (QEUEU) of the Eu3+ single-doped [Bi(HPyr)]. Straightforward emission color tuning by changing the relative concentrations of the dopant ions is possible and has been studied for the systems double-doped with Tb3+:Eu3+, Tb3+:Sm3+, Dy3+:Eu3+ and Dy3+:Sm3+ ions. The Dy-containing systems show different shades of white emission and a wide range of correlated color temperatures (CCT - 2500 to 7500 K), hence being a promising candidate for the development of single-phase white light emitting devices.
6

Sintonização de cores de emissão fotoluminescente da rede de coordenação [Bi(HPyr)] dopada com íons TR3+ / Photoluminescent emission color tuning of the coordination network [Bi(HPyr)] doped with RE3+ ions

Cesar dos Santos Cunha 11 December 2018 (has links)
A rede de coordenação constituída por íons bismuto trivalente e ácido piromelítico (H4Pyr), [Bi(HPyr)], foi utilizada com sucesso como matriz hospedeira para a incorporação in situ dos íons terras raras trivalentes TR3+: Sm3+, Eu3+, Tb3+ e Dy3+. O método de alto rendimento para a síntese permitiu preparar e estudar a pureza de fase e cristalinidade das séries de amostras, acelerando e facilitando a comparação entre os parâmetros de síntese. As técnicas de espectroscopia de absorção no infravermelho, análise elementar e termogravimétrica, microscopia eletrônica de varredura e espectroscopia de energia dispersiva de raios X, bem como a difração de raios X de pó e o refinamento de Le Bail dos compostos indicaram que a dopagem não afetou a estrutura, cristalinidade, morfologia e estabilidade térmica da matriz. O estudo das propriedades espectroscópicas da matriz [Bi(HPyr)] não dopada e dopada com íons TR3+ permitiu a investigação dos processos de sensibilização do íons ativadores TR3+. As propriedades espectroscópicas características do íon Eu3+ foi utilizada para estudar o sítio e ambiente de coordenação dos dopantes por meio dos parâmetros de intensidades experimentais Ωλ (λ: 2 and 4), além do rendimento quântico intrínseco (QEUEU ) do material [Bi(HPyr)] mono dopado com Eu3+. A sintonização da cor de emissão pela mudança da concentração relativa dos íons dopantes é investigada para os sistemas duplamente dopados com os íons Tb3+:Eu3+, Tb3+:Sm3+, Dy3+:Eu3+ e Dy3+:Sm3+. Os sistemas contendo íons Dy3+ apresentam diferentes tonalidades de emissão branca e ampla faixa de temperatura de cor correlata (CCT - 2500 a 7500 K), sendo promissores para o desenvolvimento de dispositivos emissores de luz branca de fase única. / The coordination network consisting of trivalent bismuth ions and pyromellitic acid (H4Pyr), [Bi(HPyr)], was successfully applied as host matrix for in situ incorporation of the trivalent rare earth ions RE3+: Sm3+, Eu3+, Tb3+ and Dy3+. The high-throughput methods for hydrothermal synthesis allowed to prepare and study phase purity and crystallinity of sample series, accelerating and facilitating the comparison between the synthesis parameters. Infrared absorption spectroscopy, elemental and thermogravimetric analysis, scanning electron microscopy and energy-dispersive X-ray spectroscopy, as well as powder X-ray diffraction and the Le Bail refinement of the compounds indicated that doping did not affect the structure, crystallinity, morphology and thermal stability of the matrix. The study of the spectroscopic luminescence properties of the nondoped and doped [Bi(HPyr)] allowed the investigation of the sensitization processes of dopant RE3+ ions. The characteristic spectroscopic properties of the Eu3+ ion were used to study the incorporation site and coordination environment of the dopant by the calculation of the experimental intensity parameters Ωλ (λ: 2 and 4), besides the intrinsic quantum yield (QEUEU) of the Eu3+ single-doped [Bi(HPyr)]. Straightforward emission color tuning by changing the relative concentrations of the dopant ions is possible and has been studied for the systems double-doped with Tb3+:Eu3+, Tb3+:Sm3+, Dy3+:Eu3+ and Dy3+:Sm3+ ions. The Dy-containing systems show different shades of white emission and a wide range of correlated color temperatures (CCT - 2500 to 7500 K), hence being a promising candidate for the development of single-phase white light emitting devices.
7

Understanding Gas Sorption Mechanisms in Metal–Organic Materials via Computational Experimentation

Forrest, Katherine A. 10 November 2017 (has links)
Metal–organic materials (MOMs), a type of porous crystalline structure composed of organic ligands jointed with metal ions, have captured the interest of scientists as potentially useful in gas sorption applications. Some of the most crucial avenues of investigation are in H2 storage (for use as a clean burning fuel source) and CO2 capture and sequestration (to remove the greenhouse gas from the environment). A major advantage of MOMs for such applications is their high variability in terms of physical dimensions and chemical moieties, based on composition and synthesis conditions, making them potentially customizable for specific application if necessary structural characteristics are known. Computational experimentation is an important avenue for determining such specifications as it allows examination of gas/MOM interaction at the molecular level. In this dissertation a number of MOM structure are computationally studied in order to elucidate gas sorption mechanisms. These systems were probed by classical simulation using grand canonical Monte Carlo with a carefully chosen set of intermolecular interaction parameters. While the focus of this work is specifically H2 and CO2 sorptive behavior, the insights gained from simulation extend beyond these specific applications. Addressed first are a series of MOMs with rht topology, which possesses asymmetric copper paddle-wheels and easily functionalized linkers. Beginning with a prototypical structure and then branching out into more chemically interesting variants revealed surprising gas sorption behavior about the metal paddle-wheels (with a definite preference for one copper over its counterpart). A synthetic strategy for controlling the preferred open-metal sorption site through the inclusion of electron rich functionality in the linker bodies, was also revealed. An additional MOM with similar composition components, exhibiting zyg topology, also showed this metal preference effect on the asymmetric paddle-wheels. A second class of MOMs, composed of square-pillared grids and known as the SIFSIX series (due to the inclusion of SiF62− as pillaring units) was also examined. These structures have been shown excellent results for CO2 sorption making the elucidation of the sorptive mechanisms of great interest. Six different structures were examined, probing the effects of linker length, metal selection, and interpenitration of unbonded scaffolds. The nature of the CO2-MOM sorption interactions were revealed through simulation and provided insights regarding the synergistic effect of pore dimensions and SiF62− functionality for specifying specific behavior (i.e. high selectivity vs. high uptake). A final MOM, composed of Y3+ ions and chemically complex linkers, was also examined. Disorder in the crystallographic data (e.g. single atoms with multiple positions) indicated the coexistance of notably different unit cells in the same system. Nevertheless, simulations revealed favored sorption sites in conjunction with results from physical experimentation.
8

Homo-and Hetero-Metallic Supramolecular Assemblies : Synthesis, Structures and Characterization

Pramanik, Sunipa January 2013 (has links) (PDF)
The work highlighted in this dissertation comprises of syntheses and characterizations of coordination driven supramolecular compounds. The synthesized complexes are characterized by IR spectroscopy, multinuclear NMR spectroscopy and single crystal structure determination. Chapter 2: In this chapter we attempted to make a three dimensional self-assembled cage by the reaction between N, N’, N’’- tris(3-pyridyl)trimesic amide a tritopic donor and Pt(II) based 90° ditopic acceptor cis-(dppe)Pt(II)(OTf)2 [dppe = 1,2-bis(diphenylphosphino)ethane]. It resulted in a trigonal bipyramidal structure. The cage was characterized by single crystal XRD and FT-IR spectra. Chapter 3: In this chapter we have reported the synthesis and characterization of two hereby unknown metal containing carboxylic acid ligands containing the Pt-ethynyl moiety. Also we have shown the preparation and structure analysis of a copper containing metal-organic framework incorporating one of the Pt-ethynyl containing carboxylic acid ligand. This has resulted in the formation of a very interesting hetero-metallic MOF which is quite uncommon in literature.

Page generated in 0.092 seconds