• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

NEPTUNE-CANADA BASED GEOPHYSICAL IMAGING OF GAS HYDRATE IN THE BULLSEYE VENT

Willoughby, E.C., Mir, R, Scholl, Carsten, Edwards, R.N. 07 1900 (has links)
Using the NEPTUNE-Canada cable-linked ocean-floor observatory we plan continuous, real-time monitoring of the gas hydrate-associated, “Bullseye” cold vent offshore Vancouver Island. Our group inferred the presence of a massive gas hydrate deposit there, based on the significant resistivity anomaly in our controlled-source electromagnetic (CSEM) dataset, as well as anomalously heightened shear moduli, from seafloor compliance data. This interpretation was confirmed by drilling by IODP expedition 311 (site U1328), which indicated a 40 m thick gas hydrate layer near the surface. Sporadic venting and variations in blanking in yearly single-channel seismic surveys suggest the system is evolving in time. We are preparing two stationary semi-permanent imaging experiments: a CSEM and a seafloor compliance installation. These are designed not only to assess the extent of the gas hydrate deposit, but also for long-term monitoring of the gas hydrate/free gas system. The principle of the CSEM experiment is to input a particular electromagnetic signal at a transmitter (TX) dipole on the seafloor, and to record the phase and amplitude of the response at several seafloor receiver (RX) dipoles, at various TX-RX separations. The data are sensitive to the underlying resistivity, which is increased when conductive pore water is displaced by electrically-insulating gas hydrate. The experiment is controlled onshore, and can be expanded to include a downhole TX. Repeated soundings at this site, over several years, will allow measurement of minute changes in resistivity as a function of depth, and by inference, changes in gas hydrate or underlying free gas distribution. Similarly, the displacement of pore fluids by solid gas hydrate will affect elastic parameters. Thus, seafloor compliance data, the transfer function between pressure and seafloor displacement time series, most sensitive to shear modulus as a function of depth, will be gathered continuously to monitor the evolution of the gas hydrate distribution.
2

Temporal Variations in the Compliance of Gas Hydrate Formations

Roach, Lisa Aretha Nyala 20 March 2014 (has links)
Seafloor compliance is a non-intrusive geophysical method sensitive to the shear modulus of the sediments below the seafloor. A compliance analysis requires the computation of the frequency dependent transfer function between the vertical stress, produced at the seafloor by the ultra low frequency passive source-infra-gravity waves, and the resulting displacement, related to velocity through the frequency. The displacement of the ocean floor is dependent on the elastic structure of the sediments and the compliance function is tuned to different depths, i.e., a change in the elastic parameters at a given depth is sensed by the compliance function at a particular frequency. In a gas hydrate system, the magnitude of the stiffness is a measure of the quantity of gas hydrates present. Gas hydrates contain immense stores of greenhouse gases making them relevant to climate change science, and represent an important potential alternative source of energy. Bullseye Vent is a gas hydrate system located in an area that has been intensively studied for over 2 decades and research results suggest that this system is evolving over time. A partnership with NEPTUNE Canada allowed for the investigation of this possible evolution. This thesis describes a compliance experiment configured for NEPTUNE Canada’s seafloor observatory and its failure. It also describes the use of 203 days of simultaneously logged pressure and velocity time-series data, measured by a Scripps differential pressure gauge, and a Güralp CMG-1T broadband seismometer on NEPTUNE Canada’s seismic station, respectively, to evaluate variations in sediment stiffness near Bullseye. The evaluation resulted in a (- 4.49 x10-3± 3.52 x 10-3) % change of the transfer function of 3rd October, 2010 and represents a 2.88% decrease in the stiffness of the sediments over the period. This thesis also outlines a new algorithm for calculating the static compliance of isotropic layered sediments.
3

Temporal Variations in the Compliance of Gas Hydrate Formations

Roach, Lisa Aretha Nyala 20 March 2014 (has links)
Seafloor compliance is a non-intrusive geophysical method sensitive to the shear modulus of the sediments below the seafloor. A compliance analysis requires the computation of the frequency dependent transfer function between the vertical stress, produced at the seafloor by the ultra low frequency passive source-infra-gravity waves, and the resulting displacement, related to velocity through the frequency. The displacement of the ocean floor is dependent on the elastic structure of the sediments and the compliance function is tuned to different depths, i.e., a change in the elastic parameters at a given depth is sensed by the compliance function at a particular frequency. In a gas hydrate system, the magnitude of the stiffness is a measure of the quantity of gas hydrates present. Gas hydrates contain immense stores of greenhouse gases making them relevant to climate change science, and represent an important potential alternative source of energy. Bullseye Vent is a gas hydrate system located in an area that has been intensively studied for over 2 decades and research results suggest that this system is evolving over time. A partnership with NEPTUNE Canada allowed for the investigation of this possible evolution. This thesis describes a compliance experiment configured for NEPTUNE Canada’s seafloor observatory and its failure. It also describes the use of 203 days of simultaneously logged pressure and velocity time-series data, measured by a Scripps differential pressure gauge, and a Güralp CMG-1T broadband seismometer on NEPTUNE Canada’s seismic station, respectively, to evaluate variations in sediment stiffness near Bullseye. The evaluation resulted in a (- 4.49 x10-3± 3.52 x 10-3) % change of the transfer function of 3rd October, 2010 and represents a 2.88% decrease in the stiffness of the sediments over the period. This thesis also outlines a new algorithm for calculating the static compliance of isotropic layered sediments.

Page generated in 0.0506 seconds