• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 15
  • 11
  • 6
  • 4
  • 4
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 51
  • 51
  • 15
  • 15
  • 14
  • 13
  • 13
  • 13
  • 12
  • 12
  • 12
  • 12
  • 11
  • 10
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Localisation d'objets 3D industriels à l'aide d'un algorithme de SLAM contraint au modèle / Localization of industtrial 3D objects using model-constrained SLAM

Loesch, Angélique 01 December 2017 (has links)
Un besoin applicatif existe en terme de localisation 3D d’objets par vision. Cette technologie devient en effet de plus en plus populaire dans le milieu industriel où elle peut être utile lors de contrôle qualité, de robotisation de tâches ou encore d’aide à la maintenance par Réalité Augmentée. Néanmoins, le déploiement de telles applications est actuellement limité en raison de la difficulté à allier qualité de localisation, facilité de mise en oeuvre et généricité de la solution. En effet, la majorité des solutions implique : soit des étapes de mise en oeuvre complexes comme avec l’installation de capteurs de mouvement ou une préparation supervisée du modèle CAO; soit un manque de précision de la localisation dans le cadre de certaines applications nécessitant de prendre en compte des mouvements de fortes amplitudes de la caméra (provoquant du flou de bouger et des tremblements dans le flux vidéo) ainsi que des occultations partielles ou totales de l’objet ; soit enfin une restriction sur la nature de l’objet, celui-ci devant être texturé, de petite taille ou encore polyédrique pour avoir une bonne localisation. La plupart des solutions de localisation existantes correspondent à des approches de suivi basé modèle. Cette méthode consiste à estimer la pose relative entre la caméra et l’objet d’intérêt par mises en correspondance de primitives 3D extraites du modèle avec des primitives 2D extraites d’images d’un flux vidéo. Pour autant, cette approche atteint ses limites lorsque l’objet est difficilement observable dans l’image.Afin d’améliorer la localisation lorsque l’application concerne un objet fixe, de récentes solutions se sont appuyées en complément des primitives du modèle, sur des primitives de l’environnement reconstruites au cours du processus de localisation. Ces approches combinent algorithmes de SLAM (Simultaneous Localization And Mapping) et de suivi d’objet basé contours en utilisant les informations du modèle comme contrainte dans le processus d’optimisation du SLAM. Pour cela, un terme d’erreur est ajouté à la fonction de coût classique.Celui-ci mesure l’erreur de re-projection entre des primitives 3D issues des arêtes franches du modèle et les points de contour 2D dans l’image qui leur sont associés. L’ajout de cette contrainte permet d’exprimer la localisation du SLAM dans le repère de l’objet d’intérêt tout en réduisant sa dérive. Les solutions de SLAM contraint au modèle n’exploitant cependant que les contours francs du modèle, ne sont pas génériques et ne permettent de localiser que des objets polyédriques. De plus, l’ajout de cette contrainte entraîne une forte augmentation de la consommation mémoire, les images de contours nécessaires à l’étape de mise en correspondance devant être conservées.Les travaux présentés dans ce mémoire de thèse visent à fournir une solution répondant simultanément à l’ensemble des besoins concernant la facilité de déploiement, la qualité de localisation et la généricité sur la nature des objets suivis. Aussi, notre solution basée sur un algorithme de SLAM visuel contraint basé images clés, se restreint-elle au seul usage d’une caméra couleur, les caméras RGBD impliquant généralement une limite sur le volume, la nature réflective ou absorbante de l’objet, et sur la luminosité de son environnement. Cette étude est en outre restreinte à la seule exploitation de modèles 3D géométrique non texturés, les textures pouvant difficilement être considérées comme stables dans le temps (usure, taches...) et pouvant varier pour un même objet manufacturé. De plus, les modèles à base de nuages de descripteurs locaux ou les modèles surfaciques texturés sont actuellement des données peu disponibles dans l’industrie. Enfin, nous faisons le choix d’estimer la pose de la caméra de manière géométrique et non par apprentissage. Le suivi d’objets à l’aide d’apprentissage automatique est en effet encore difficilement exploitable en milieu industriel. (...) / In the industry domain, applications such as quality control, automation of complex tasks or maintenance support with Augmented Reality (AR) could greatly benefit from visual tracking of 3D objects. However, this technology is under-exploited due to the difficulty of providing deployment easiness, localization quality and genericity simultaneously. Most existing solutions indeed involve a complex or an expensive deployment of motion capture sensors, or require human supervision to simplify the 3D model. And finally, most tracking solutions are restricted to textured or polyhedral objects to achieved an accurate camera pose estimation.Tracking any object is a challenging task due to the large variety of object forms and appearances. Industrial objects may indeed have sharp edges, or occluding contours that correspond to non-static and view-point dependent edges. They may also be textured or textureless. Moreover, some applications require to take large amplitude motions as well as object occlusions into account, tasks that are not always dealt with common model-based tracking methods. These approaches indeed exploit 3D features extracted from a model, that are matched with 2D features in the image of a video-stream. However the accuracy and robustness of the camera localization depend on the visibility of the object as well as on the motion of the camera. To better constrain the localization when the object is static, recent solutions rely on environment features that are reconstructed online, in addition to the model ones. These approaches combine SLAM (Simultaneous Localization And Mapping) and model-based tracking solutions by using constraints from the 3D model of the object of interest. Constraining SLAM algorithms with a 3D model results in a drift free localization. However, such approaches are not generic since they are only adapted for textured or polyhedral objects. Furthermore, using the 3D model to constrain the optimization process may generate high memory consumption,and limit the optimization to a temporal window of few cameras. In this thesis, we propose a solution that fulfills the requirements concerning deployment easiness, localization quality and genericity. This solution, based on a visual key-frame-based constrained SLAM, only exploits an RGB camera and a geometric CAD model of the static object of interest. An RGB camera is indeed preferred over an RGBD sensor, since the latter imposes limits on the volume, the reflectiveness or the absorptiveness of the object, and the lighting conditions. A geometric CAD model is also preferred over a textured model since textures may hardly be considered as stable in time (deterioration, marks,...) and may vary for one manufactured object. Furthermore, textured CAD models are currently not widely spread. Contrarily to previous methods, the presented approach deals with polyhedral and curved objects by extracting dynamically 3D contour points from a model rendered on GPU. This extraction is integrated as a structure constraint into the constrained bundle adjustment of a SLAM algorithm. Moreover we propose different formalisms of this constraint to reduce the memory consumption of the optimization process. These formalisms correspond to hybrid structure/trajectory constraints, that uses output camera poses of a model-based tracker. These formalisms take into account the structure information given by the 3D model while relying on the formalism of trajectory constraints. The proposed solution is real-time, accurate and robust to occlusion or sudden motion. It has been evaluated on synthetic and real sequences of different kind of objects. The results show that the accuracy achieved on the camera trajectory is sufficient to ensure a solution perfectly adapted for high-quality Augmented Reality experiences for the industry.
42

Orientace kamery v reálném čase / Camera Orientation in Real-Time

Župka, Jiří January 2010 (has links)
This work deals with the orientation of the camera in real-time with a single camera. Offline methods are described and used as a reference for comparison of a real-time metods. Metods work in real-time Monocular SLAM and PTAM methods are there described and compared. Further, paper shows hints of advanced methods whereas future work is possible.
43

Registration and Localization of Unknown Moving Objects in Markerless Monocular SLAM

Blake Austin Troutman (15305962) 18 May 2023 (has links)
<p>Simultaneous localization and mapping (SLAM) is a general device localization technique that uses realtime sensor measurements to develop a virtualization of the sensor's environment while also using this growing virtualization to determine the position and orientation of the sensor. This is useful for augmented reality (AR), in which a user looks through a head-mounted display (HMD) or viewfinder to see virtual components integrated into the real world. Visual SLAM (i.e., SLAM in which the sensor is an optical camera) is used in AR to determine the exact device/headset movement so that the virtual components can be accurately redrawn to the screen, matching the perceived motion of the world around the user as the user moves the device/headset. However, many potential AR applications may need access to more than device localization data in order to be useful; they may need to leverage environment data as well. Additionally, most SLAM solutions make the naive assumption that the environment surrounding the system is completely static (non-moving). Given these circumstances, it is clear that AR may benefit substantially from utilizing a SLAM solution that detects objects that move in the scene and ultimately provides localization data for each of these objects. This problem is known as the dynamic SLAM problem. Current attempts to address the dynamic SLAM problem often use machine learning to develop models that identify the parts of the camera image that belong to one of many classes of potentially-moving objects. The limitation with these approaches is that it is impractical to train models to identify every possible object that moves; additionally, some potentially-moving objects may be static in the scene, which these approaches often do not account for. Some other attempts to address the dynamic SLAM problem also localize the moving objects they detect, but these systems almost always rely on depth sensors or stereo camera configurations, which have significant limitations in real-world use cases. This dissertation presents a novel approach for registering and localizing unknown moving objects in the context of markerless, monocular, keyframe-based SLAM with no required prior information about object structure, appearance, or existence. This work also details a novel deep learning solution for determining SLAM map initialization suitability in structure-from-motion-based initialization approaches. This dissertation goes on to validate these approaches by implementing them in a markerless, monocular SLAM system called LUMO-SLAM, which is built from the ground up to demonstrate this approach to unknown moving object registration and localization. Results are collected for the LUMO-SLAM system, which address the accuracy of its camera localization estimates, the accuracy of its moving object localization estimates, and the consistency with which it registers moving objects in the scene. These results show that this solution to the dynamic SLAM problem, though it does not act as a practical solution for all use cases, has an ability to accurately register and localize unknown moving objects in such a way that makes it useful for some applications of AR without thwarting the system's ability to also perform accurate camera localization.</p>
44

以四旋翼UAS酬載熱感測器製作數值表面溫度模型供地溫研究 / Generation of digital surface temperature model from images collected by thermal sensor on quadcopter UAS for geothermal study

謝耀震, Hsieh, Yao-Chen Unknown Date (has links)
熱像儀,能感測可見光感測器無法取得的訊息,因此若能透過熱像儀器進行環境偵測,便能得到一般可見光感測器無法獲取的資料。本研究擬以四旋翼UAS酬載熱像儀得到局部區域高解析度之地面熱資訊以便作為地溫研究之背景資料使用。而一般地溫研究區,不易佈設控制點,因此本研究除於無人機上酬載熱像儀之外,並將搭載Trimble BD970 GNSS OEM接收模組,嘗試以少量地面控制點、以及GNSS動態後處理的方式取得取像時對應的GNSS觀測量輔助熱像定位定向。本研究中針對國立政治大學旁的指南溪實驗區與陽明山國家公園的小油坑實驗區,使用AI-RIDER YJ-1000-HC四旋翼UAS分別酬載熱像儀FLIR Tau 640和巨哥XM6,並且同時搭載Trimble BD970 GNSS OEM接收模組、以及GNSS動態後處理的方式取得取像時對應的GNSS觀測量搭配少量地面控制點輔助熱像定位定向,過程中透過三焦張量剔除自動匹配之誤匹配連結點。實驗結果顯示,兩實驗區所產製之DSM於不易變動區域精度經現有資料檢核均在±1m,而指南溪實驗區產製出地面解析度11公分的數值表面模型(Digital Surface Model, DSM)與正射熱像,且正射熱像平面精度達為47公分;小油坑實驗區產製出地面解析度14公分之DSM與正射熱像,正射熱像平面精度則為67公分,雖然DSM和正射熱像精度無法符合一般常規的測量規範,但成果仍然可以證明熱像直接產製DSM以及正射熱像之可行性,兩實驗區最後皆生成數值溫度表面模型(Digital Surface Temparature Model, DSTM),顯示本研究所提方法之可行性,所生成之成果可供後續地溫研究使用。 / Thermal infrared images show the temperature change of sensed scenes. Therefore, thermal infrared camera can sense some important information that optical digital cameras cannot do for the environment monitoring. In this study, the Quadcopter UAS for thermal image collection applied to geothermal study will be developed. FIIR Tau 640 and Magnity Eletric XM6 thermal infrared sensor will be used in this thermal image collection system separately two test areas, Zhinan River nearby NCCU and Xiaoyoukeng, in the Yangmingshan National Park. Additionally, Trimble BD970 GNSS OEM board will be carried on the Quadcopter UAS to collect dual-frequency GNSS observations for determining the flying trajectory by Post-processed kinematic (PPK) technique to support the positioning and orientating of collected thermal images, and the trifocal tensor will be used to delete wrong matching tie images points. From the tests, the differences between produced DSM and existing DSM data are ± 1 m on uneasy change ground surface in two test areas. The resolution of produced DSM and thermal orthoimages are about 11 cm in Zhinan River, and 14cm in Xiaoyoukeng area. The accuracy of thermal orthoimages is 47cm in Zhinan River and 67cm in Xiaoyoukeng area. The accuracy of thermal orthoimages may not comply with a normal surveying standard, but it proves the possibility of DSM and orthorectifed thermal images generated from thermal images directly. Digital Surface Temparature Model (DSTM) produced in both tests can be used for volcanic geothermal monitoring in the future.
45

VBS-RTK GPS輔助UAV影像自率光束法空三平差之研究 / VBS-RTK GPS Supported Self-Calibration Bundle Adjustment for Aerial Triangulation of Unmanned Aerial Vehicle Images

李敏瑜, Li, Min Yu Unknown Date (has links)
無人飛行載具(Unmanned Aerial Vehicle, UAV)於要求精度之圖資測製應用時,因飛行高度較低並可在雲下飛行取像,與大型載具相比可更機動性獲取空間解析度較高之影像,雖無法如大型載具酬載大像幅感測器供大區域圖資製作,但於小區域之圖資更新卻相當適合。但一般UAV因酬載重量限制,僅可酬載體積小且重量輕之感測器,如非量測型相機及低精度定位定向系統,即AHRS系統。因此,本研究嘗試在UAV上酬載Trimble BD970 GNSS OEM GPS接收模組,此GPS接收模組體積小且重量輕可安置於UAV上,並透過VBS-RTK GPS定位技術獲取UAV精確飛行軌跡資訊,再經時間內插相機曝光瞬時的GPS資訊供空中控制使用,輔助UAV影像空中三角測量(簡稱空三)平差,以降低地面控制點需求。 但欲引入GPS觀測量供空中控制使用必須考量GPS天線與相機投影中心偏移量之問題,但因UAV所酬載之非量測型相機,將造成此偏移量不易透過地面測量方式測得,於本研究將於空三平差時使用線性漂移參數克服此偏移量無法量測之問題;此外,UAV所酬載之非量測型相機,相機參數乃透過地面近景攝影測量以自率光束法平差方式率定所得,但率定所得相機參數無法完全描述相機在航拍取像時的情況,故本研究於空三平差將採用自率光束法克服相機參數率定不完全之問題。實驗中,首先確定GPS模組BD970在VBS-RTK GPS定位技術下在地面高速移動時可獲得高精度的定位成果;接續驗證線性漂移參數及自率光束法平差於此研究的適用性;最後亦探討不同地面控制點配置及來源對空三平差之精度探討,並提出1/5000基本圖圖資測製精度要求下,VBS-RTK GPS輔助UAV影像自率光束法空三平差的地面控制點最適配置。 / UAV(Unmanned Aerial Vehicle) is currently used in civil purpose such as mapping and disaster monitoring. One of UAV advantages is to collect images with high resolution for mapping demand. However, due to payload limitations of UAV, it is difficult to mount metric aerial camera and precise POS(Positioning and Orientation System) device. Instead, only the non-metric camera and the low accurate AHRS (Attitude and Heading Reference System) can be installed. For mapping demands, Trimble BD970 GNSS OEM board will be carried on the UAV to collect the high accurate flying trajectory as control information for AT (aerial triangulation) by VBS-RTK(Virtual Base Station - Real Time Kinematic) GPS technique. Meanwhile self-calibration bundle adjustment will be employed for AT(Aerial Triangulation) to overcome the imperfect calibration of non-metric camera by the close-range photogrammetric approach. The precise offset between image perspective center and GPS antenna center, called GPS antenna-camera offset, is hard to measure in centimenter level by terrestrial measurement approach. Therefore the drift parameters will be utilized to solve the problem of GPS antenna-camera offset while performing bundle adjustment with self-calibration for AT of UAV images. In the experiments of this study, the height positioning accuracy of BD970 by VBS-RTK GPS approach at high speed movement will be proved firstly. Then the adaptability of drift parameters and self-calibration for GPS supported AT of UAV images will be verified. Finally, the accuracy of AT by using different control information will be analized and appropriate configuration of GCPs(Ground Control Points) for VBS-RTK GPS supported self-calibration bundle adjustment for AT of UAV images will be proposed under the mapping demand with the scale of 1 : 5000.
46

Geometrische und stochastische Modelle zur Verarbeitung von 3D-Kameradaten am Beispiel menschlicher Bewegungsanalysen / Geometric and stochastic models for the processing of 3D camera data within the context of human motion analyses

Westfeld, Patrick 15 June 2012 (has links) (PDF)
Die dreidimensionale Erfassung der Form und Lage eines beliebigen Objekts durch die flexiblen Methoden und Verfahren der Photogrammetrie spielt für ein breites Spektrum technisch-industrieller und naturwissenschaftlicher Einsatzgebiete eine große Rolle. Die Anwendungsmöglichkeiten reichen von Messaufgaben im Automobil-, Maschinen- und Schiffbau über die Erstellung komplexer 3D-Modelle in Architektur, Archäologie und Denkmalpflege bis hin zu Bewegungsanalysen in Bereichen der Strömungsmesstechnik, Ballistik oder Medizin. In der Nahbereichsphotogrammetrie werden dabei verschiedene optische 3D-Messsysteme verwendet. Neben flächenhaften Halbleiterkameras im Einzel- oder Mehrbildverband kommen aktive Triangulationsverfahren zur Oberflächenmessung mit z.B. strukturiertem Licht oder Laserscanner-Systeme zum Einsatz. 3D-Kameras auf der Basis von Photomischdetektoren oder vergleichbaren Prinzipien erzeugen durch die Anwendung von Modulationstechniken zusätzlich zu einem Grauwertbild simultan ein Entfernungsbild. Als Einzelbildsensoren liefern sie ohne die Notwendigkeit einer stereoskopischen Zuordnung räumlich aufgelöste Oberflächendaten in Videorate. In der 3D-Bewegungsanalyse ergeben sich bezüglich der Komplexität und des Rechenaufwands erhebliche Erleichterungen. 3D-Kameras verbinden die Handlichkeit einer Digitalkamera mit dem Potential der dreidimensionalen Datenakquisition etablierter Oberflächenmesssysteme. Sie stellen trotz der noch vergleichsweise geringen räumlichen Auflösung als monosensorielles System zur Echtzeit-Tiefenbildakquisition eine interessante Alternative für Aufgabenstellungen der 3D-Bewegungsanalyse dar. Der Einsatz einer 3D-Kamera als Messinstrument verlangt die Modellierung von Abweichungen zum idealen Abbildungsmodell; die Verarbeitung der erzeugten 3D-Kameradaten bedingt die zielgerichtete Adaption, Weiter- und Neuentwicklung von Verfahren der Computer Vision und Photogrammetrie. Am Beispiel der Untersuchung des zwischenmenschlichen Bewegungsverhaltens sind folglich die Entwicklung von Verfahren zur Sensorkalibrierung und zur 3D-Bewegungsanalyse die Schwerpunkte der Dissertation. Eine 3D-Kamera stellt aufgrund ihres inhärenten Designs und Messprinzips gleichzeitig Amplituden- und Entfernungsinformationen zur Verfügung, welche aus einem Messsignal rekonstruiert werden. Die simultane Einbeziehung aller 3D-Kamerainformationen in jeweils einen integrierten Ansatz ist eine logische Konsequenz und steht im Vordergrund der Verfahrensentwicklungen. Zum einen stützen sich die komplementären Eigenschaften der Beobachtungen durch die Herstellung des funktionalen Zusammenhangs der Messkanäle gegenseitig, wodurch Genauigkeits- und Zuverlässigkeitssteigerungen zu erwarten sind. Zum anderen gewährleistet das um eine Varianzkomponentenschätzung erweiterte stochastische Modell eine vollständige Ausnutzung des heterogenen Informationshaushalts. Die entwickelte integrierte Bündelblockausgleichung ermöglicht die Bestimmung der exakten 3D-Kamerageometrie sowie die Schätzung der distanzmessspezifischen Korrekturparameter zur Modellierung linearer, zyklischer und signalwegeffektbedingter Fehleranteile einer 3D-Kamerastreckenmessung. Die integrierte Kalibrierroutine gleicht in beiden Informationskanälen gemessene Größen gemeinsam, unter der automatischen Schätzung optimaler Beobachtungsgewichte, aus. Die Methode basiert auf dem flexiblen Prinzip einer Selbstkalibrierung und benötigt keine Objektrauminformation, wodurch insbesondere die aufwendige Ermittlung von Referenzstrecken übergeordneter Genauigkeit entfällt. Die durchgeführten Genauigkeitsuntersuchungen bestätigen die Richtigkeit der aufgestellten funktionalen Zusammenhänge, zeigen aber auch Schwächen aufgrund noch nicht parametrisierter distanzmessspezifischer Fehler. Die Adaptivität und die modulare Implementierung des entwickelten mathematischen Modells gewährleisten aber eine zukünftige Erweiterung. Die Qualität der 3D-Neupunktkoordinaten kann nach einer Kalibrierung mit 5 mm angegeben werden. Für die durch eine Vielzahl von meist simultan auftretenden Rauschquellen beeinflusste Tiefenbildtechnologie ist diese Genauigkeitsangabe sehr vielversprechend, vor allem im Hinblick auf die Entwicklung von auf korrigierten 3D-Kameradaten aufbauenden Auswertealgorithmen. 2,5D Least Squares Tracking (LST) ist eine im Rahmen der Dissertation entwickelte integrierte spatiale und temporale Zuordnungsmethode zur Auswertung von 3D-Kamerabildsequenzen. Der Algorithmus basiert auf der in der Photogrammetrie bekannten Bildzuordnung nach der Methode der kleinsten Quadrate und bildet kleine Oberflächensegmente konsekutiver 3D-Kameradatensätze aufeinander ab. Die Abbildungsvorschrift wurde, aufbauend auf einer 2D-Affintransformation, an die Datenstruktur einer 3D-Kamera angepasst. Die geschlossen formulierte Parametrisierung verknüpft sowohl Grau- als auch Entfernungswerte in einem integrierten Modell. Neben den affinen Parametern zur Erfassung von Translations- und Rotationseffekten, modellieren die Maßstabs- sowie Neigungsparameter perspektivbedingte Größenänderungen des Bildausschnitts, verursacht durch Distanzänderungen in Aufnahmerichtung. Die Eingabedaten sind in einem Vorverarbeitungsschritt mit Hilfe der entwickelten Kalibrierroutine um ihre opto- und distanzmessspezifischen Fehler korrigiert sowie die gemessenen Schrägstrecken auf Horizontaldistanzen reduziert worden. 2,5D-LST liefert als integrierter Ansatz vollständige 3D-Verschiebungsvektoren. Weiterhin können die aus der Fehlerrechnung resultierenden Genauigkeits- und Zuverlässigkeitsangaben als Entscheidungskriterien für die Integration in einer anwendungsspezifischen Verarbeitungskette Verwendung finden. Die Validierung des Verfahrens zeigte, dass die Einführung komplementärer Informationen eine genauere und zuverlässigere Lösung des Korrespondenzproblems bringt, vor allem bei schwierigen Kontrastverhältnissen in einem Kanal. Die Genauigkeit der direkt mit den Distanzkorrekturtermen verknüpften Maßstabs- und Neigungsparameter verbesserte sich deutlich. Darüber hinaus brachte die Erweiterung des geometrischen Modells insbesondere bei der Zuordnung natürlicher, nicht gänzlich ebener Oberflächensegmente signifikante Vorteile. Die entwickelte flächenbasierte Methode zur Objektzuordnung und Objektverfolgung arbeitet auf der Grundlage berührungslos aufgenommener 3D-Kameradaten. Sie ist somit besonders für Aufgabenstellungen der 3D-Bewegungsanalyse geeignet, die den Mehraufwand einer multiokularen Experimentalanordnung und die Notwendigkeit einer Objektsignalisierung mit Zielmarken vermeiden möchten. Das Potential des 3D-Kamerazuordnungsansatzes wurde an zwei Anwendungsszenarien der menschlichen Verhaltensforschung demonstriert. 2,5D-LST kam zur Bestimmung der interpersonalen Distanz und Körperorientierung im erziehungswissenschaftlichen Untersuchungsgebiet der Konfliktregulation befreundeter Kindespaare ebenso zum Einsatz wie zur Markierung und anschließenden Klassifizierung von Bewegungseinheiten sprachbegleitender Handgesten. Die Implementierung von 2,5D-LST in die vorgeschlagenen Verfahren ermöglichte eine automatische, effektive, objektive sowie zeitlich und räumlich hochaufgelöste Erhebung und Auswertung verhaltensrelevanter Daten. Die vorliegende Dissertation schlägt die Verwendung einer neuartigen 3D-Tiefenbildkamera zur Erhebung menschlicher Verhaltensdaten vor. Sie präsentiert sowohl ein zur Datenaufbereitung entwickeltes Kalibrierwerkzeug als auch eine Methode zur berührungslosen Bestimmung dichter 3D-Bewegungsvektorfelder. Die Arbeit zeigt, dass die Methoden der Photogrammetrie auch für bewegungsanalytische Aufgabenstellungen auf dem bisher noch wenig erschlossenen Gebiet der Verhaltensforschung wertvolle Ergebnisse liefern können. Damit leistet sie einen Beitrag für die derzeitigen Bestrebungen in der automatisierten videographischen Erhebung von Körperbewegungen in dyadischen Interaktionen. / The three-dimensional documentation of the form and location of any type of object using flexible photogrammetric methods and procedures plays a key role in a wide range of technical-industrial and scientific areas of application. Potential applications include measurement tasks in the automotive, machine building and ship building sectors, the compilation of complex 3D models in the fields of architecture, archaeology and monumental preservation and motion analyses in the fields of flow measurement technology, ballistics and medicine. In the case of close-range photogrammetry a variety of optical 3D measurement systems are used. Area sensor cameras arranged in single or multi-image configurations are used besides active triangulation procedures for surface measurement (e.g. using structured light or laser scanner systems). The use of modulation techniques enables 3D cameras based on photomix detectors or similar principles to simultaneously produce both a grey value image and a range image. Functioning as single image sensors, they deliver spatially resolved surface data at video rate without the need for stereoscopic image matching. In the case of 3D motion analyses in particular, this leads to considerable reductions in complexity and computing time. 3D cameras combine the practicality of a digital camera with the 3D data acquisition potential of conventional surface measurement systems. Despite the relatively low spatial resolution currently achievable, as a monosensory real-time depth image acquisition system they represent an interesting alternative in the field of 3D motion analysis. The use of 3D cameras as measuring instruments requires the modelling of deviations from the ideal projection model, and indeed the processing of the 3D camera data generated requires the targeted adaptation, development and further development of procedures in the fields of computer graphics and photogrammetry. This Ph.D. thesis therefore focuses on the development of methods of sensor calibration and 3D motion analysis in the context of investigations into inter-human motion behaviour. As a result of its intrinsic design and measurement principle, a 3D camera simultaneously provides amplitude and range data reconstructed from a measurement signal. The simultaneous integration of all data obtained using a 3D camera into an integrated approach is a logical consequence and represents the focus of current procedural development. On the one hand, the complementary characteristics of the observations made support each other due to the creation of a functional context for the measurement channels, with is to be expected to lead to increases in accuracy and reliability. On the other, the expansion of the stochastic model to include variance component estimation ensures that the heterogeneous information pool is fully exploited. The integrated bundle adjustment developed facilitates the definition of precise 3D camera geometry and the estimation of range-measurement-specific correction parameters required for the modelling of the linear, cyclical and latency defectives of a distance measurement made using a 3D camera. The integrated calibration routine jointly adjusts appropriate dimensions across both information channels, and also automatically estimates optimum observation weights. The method is based on the same flexible principle used in self-calibration, does not require spatial object data and therefore foregoes the time-consuming determination of reference distances with superior accuracy. The accuracy analyses carried out confirm the correctness of the proposed functional contexts, but nevertheless exhibit weaknesses in the form of non-parameterized range-measurement-specific errors. This notwithstanding, the future expansion of the mathematical model developed is guaranteed due to its adaptivity and modular implementation. The accuracy of a new 3D point coordinate can be set at 5 mm further to calibration. In the case of depth imaging technology – which is influenced by a range of usually simultaneously occurring noise sources – this level of accuracy is very promising, especially in terms of the development of evaluation algorithms based on corrected 3D camera data. 2.5D Least Squares Tracking (LST) is an integrated spatial and temporal matching method developed within the framework of this Ph.D. thesis for the purpose of evaluating 3D camera image sequences. The algorithm is based on the least squares image matching method already established in photogrammetry, and maps small surface segments of consecutive 3D camera data sets on top of one another. The mapping rule has been adapted to the data structure of a 3D camera on the basis of a 2D affine transformation. The closed parameterization combines both grey values and range values in an integrated model. In addition to the affine parameters used to include translation and rotation effects, the scale and inclination parameters model perspective-related deviations caused by distance changes in the line of sight. A pre-processing phase sees the calibration routine developed used to correct optical and distance-related measurement specific errors in input data and measured slope distances reduced to horizontal distances. 2.5D LST is an integrated approach, and therefore delivers fully three-dimensional displacement vectors. In addition, the accuracy and reliability data generated by error calculation can be used as decision criteria for integration into an application-specific processing chain. Process validation showed that the integration of complementary data leads to a more accurate, reliable solution to the correspondence problem, especially in the case of difficult contrast ratios within a channel. The accuracy of scale and inclination parameters directly linked to distance correction terms improved dramatically. In addition, the expansion of the geometric model led to significant benefits, and in particular for the matching of natural, not entirely planar surface segments. The area-based object matching and object tracking method developed functions on the basis of 3D camera data gathered without object contact. It is therefore particularly suited to 3D motion analysis tasks in which the extra effort involved in multi-ocular experimental settings and the necessity of object signalling using target marks are to be avoided. The potential of the 3D camera matching approach has been demonstrated in two application scenarios in the field of research into human behaviour. As in the case of the use of 2.5D LST to mark and then classify hand gestures accompanying verbal communication, the implementation of 2.5D LST in the proposed procedures for the determination of interpersonal distance and body orientation within the framework of pedagogical research into conflict regulation between pairs of child-age friends facilitates the automatic, effective, objective and high-resolution (from both a temporal and spatial perspective) acquisition and evaluation of data with relevance to behaviour. This Ph.D. thesis proposes the use of a novel 3D range imaging camera to gather data on human behaviour, and presents both a calibration tool developed for data processing purposes and a method for the contact-free determination of dense 3D motion vector fields. It therefore makes a contribution to current efforts in the field of the automated videographic documentation of bodily motion within the framework of dyadic interaction, and shows that photogrammetric methods can also deliver valuable results within the framework of motion evaluation tasks in the as-yet relatively untapped field of behavioural research.
47

航空影像控制實體 於近景影像光束法區域平差控制之精度探討 / Accuracy Investigation on Using Control Entities of Aerial Images as Controls in Bundle Adjustment of Close Range Images

林汝晏, Lin, Ju Yen Unknown Date (has links)
近來三維數值城市及數碼城市(Cyber City)為各界極欲發展及研究的課題,為了要增加三維數值城市的擬真性及美觀程度,通常是將建物模型敷貼真實拍攝之牆面影像,增加三維模型的細緻化程度。而欲精確的敷貼牆面紋理影像,必須嚴密地將所拍攝之近景影像定位定向,一般採用光束法區域平差解算,此時需加上適當的控制點控制資訊才能完成,因此控制點控制資訊若來自地面測量將相當耗費成本。多年來,各地方政府製作大比例尺地形圖時已拍攝相當多的航照影像,可用來做為上述的控制資訊,亦即航空影像控制實體,若能使用這些航空影像控制實體作為控制資訊,不但可有效利用資源,亦能減少控制點取得所需花費的成本。因此,本研究將使用航空影像控制實體所提供的控制資訊做為控制來源。 本研究探討以航空影像控制實體作為控制資訊時,使用非量測型相機以類似傳統航測拍攝方式及旋轉多基線交向拍攝方式拍攝涵蓋建物牆面的目標區影像後,於最少控制且不同控制分布時,對光束法區域平差精度之影響。因使用非量測型相機,故本研究先以iWitnessPRO近景攝影測量軟體率定相機參數,接著以PHIDIAS近景攝影測量軟體解算光束法區域平差。過程中探討使用航空影像控制實體作為控制資訊時,於最少控制且不同控制分布時,加入附加參數解算的自率光束法區域平差與與一般光束法區域平差之精度。根據實驗結果,低樓層取像的光束法區域平差之檢核點RMSE精度,其結果大多可應用於LOD 3精度等級的牆面敷貼。另,因都市地區高樓林立,狹小巷弄多,有鑒於此,本研究使用旋轉多基線交向攝影,結果顯示其將有機會運用於近景攝影測量LOD 3精度等級的牆面紋理敷貼。 / Recently, the studies about the cyber city have become a popular topic. For improving the level of detail of cyber city, photo-realistic textures from images are mapped onto the surfaces of 3D building models. Before the accurate texture mapping, bundle block adjustment can be performed to recover the parameters of exterior orientation for each close-range images more accurate and more precise, where the control information is necessary. For the past years, many aerial photogrammetry projects were done by local governments for the mapping of 1/1000 topographic maps. Those historic aerial images can be used as control information to reduce the cost and increase the efficiency. Therefore, this study investigates the accuracy of bundle block adjustment about non-metric close-range images, taken from the ways similar to the traditional aerial photogrammetry and the rotating multi-baseline photogrammetry, by using control entities from historic aerial images as the minimal controls under various control distributions. Since the non-metric camera is used for collecting the close-range images, the iWitnessPRO software is utilized for camera calibration. After that, the PHIDIAS software, a close-range photogrammetry software, is employed to performed the bundle block adjustment. During performing the bundle block adjustment, the camera parameters are regarded as unknowns and determined, called as self-calibration bundle adjustment. The results of self-calibration bundle adjustment will be compared with conventional bundle adjustment. The test results show that the accuracy of most self-calibration bundle adjustment about close-range images covered with low buildings can be used for the application of LOD 3 texture mapping. Moreover, the test results of using close-range images from rotating multi-baseline photogrammetry in urban areas show the potential possibility for LOD 3 texture mapping in urban areas with high buildings and narrow alleys.
48

3D Rekonstrukce historických míst z obrázků na Flickru / 3D Reconstruction of Historic Landmarks from Flickr Pictures

Šimetka, Vojtěch January 2015 (has links)
Tato práce popisuje problematiku návrhu a vývoje aplikace pro rekonstrukci 3D modelů z 2D obrazových dat, označované jako bundle adjustment. Práce analyzuje proces 3D rekonstrukce a důkladně popisuje jednotlivé kroky. Prvním z kroků je automatizované získání obrazové sady z internetu. Je představena sada skriptů pro hromadné stahování obrázků ze služeb Flickr a Google Images a shrnuty požadavky na tyto obrázky pro co nejlepší 3D rekonstrukci. Práce dále popisuje různé detektory, extraktory a párovací algoritmy klíčových bodů v obraze s cílem najít nejvhodnější kombinaci pro rekonstrukci budov. Poté je vysvětlen proces rekonstrukce 3D struktury, její optimalizace a jak je tato problematika realizovaná v našem programu. Závěr práce testuje výsledky získané z implementovaného programu pro několik různých datových sad a porovnává je s výsledky ostatních podobných programů, představených v úvodu práce.
49

Rekonstrukce 3D scény z obrazových dat / 3D Scene Reconstruction from Images

Hejl, Zdeněk January 2012 (has links)
This thesis describes methods of reconstruction of 3D scenes from photographs and videos using the Structure from motion approach. A new software capable of automatic reconstruction of point clouds and polygonal models from common images and videos was implemented based on these methods. The software uses variety of existing and custom solutions and clearly links them into one easily executable application. The reconstruction consists of feature point detection, pairwise matching, Bundle adjustment, stereoscopic algorithms and polygon model creation from point cloud using PCL library. Program is based on Bundler and PMVS. Poisson surface reconstruction algorithm, as well as simple triangulation and own reconstruction method based on plane segmentation were used for polygonal model creation.
50

Geometrische und stochastische Modelle zur Verarbeitung von 3D-Kameradaten am Beispiel menschlicher Bewegungsanalysen

Westfeld, Patrick 08 May 2012 (has links)
Die dreidimensionale Erfassung der Form und Lage eines beliebigen Objekts durch die flexiblen Methoden und Verfahren der Photogrammetrie spielt für ein breites Spektrum technisch-industrieller und naturwissenschaftlicher Einsatzgebiete eine große Rolle. Die Anwendungsmöglichkeiten reichen von Messaufgaben im Automobil-, Maschinen- und Schiffbau über die Erstellung komplexer 3D-Modelle in Architektur, Archäologie und Denkmalpflege bis hin zu Bewegungsanalysen in Bereichen der Strömungsmesstechnik, Ballistik oder Medizin. In der Nahbereichsphotogrammetrie werden dabei verschiedene optische 3D-Messsysteme verwendet. Neben flächenhaften Halbleiterkameras im Einzel- oder Mehrbildverband kommen aktive Triangulationsverfahren zur Oberflächenmessung mit z.B. strukturiertem Licht oder Laserscanner-Systeme zum Einsatz. 3D-Kameras auf der Basis von Photomischdetektoren oder vergleichbaren Prinzipien erzeugen durch die Anwendung von Modulationstechniken zusätzlich zu einem Grauwertbild simultan ein Entfernungsbild. Als Einzelbildsensoren liefern sie ohne die Notwendigkeit einer stereoskopischen Zuordnung räumlich aufgelöste Oberflächendaten in Videorate. In der 3D-Bewegungsanalyse ergeben sich bezüglich der Komplexität und des Rechenaufwands erhebliche Erleichterungen. 3D-Kameras verbinden die Handlichkeit einer Digitalkamera mit dem Potential der dreidimensionalen Datenakquisition etablierter Oberflächenmesssysteme. Sie stellen trotz der noch vergleichsweise geringen räumlichen Auflösung als monosensorielles System zur Echtzeit-Tiefenbildakquisition eine interessante Alternative für Aufgabenstellungen der 3D-Bewegungsanalyse dar. Der Einsatz einer 3D-Kamera als Messinstrument verlangt die Modellierung von Abweichungen zum idealen Abbildungsmodell; die Verarbeitung der erzeugten 3D-Kameradaten bedingt die zielgerichtete Adaption, Weiter- und Neuentwicklung von Verfahren der Computer Vision und Photogrammetrie. Am Beispiel der Untersuchung des zwischenmenschlichen Bewegungsverhaltens sind folglich die Entwicklung von Verfahren zur Sensorkalibrierung und zur 3D-Bewegungsanalyse die Schwerpunkte der Dissertation. Eine 3D-Kamera stellt aufgrund ihres inhärenten Designs und Messprinzips gleichzeitig Amplituden- und Entfernungsinformationen zur Verfügung, welche aus einem Messsignal rekonstruiert werden. Die simultane Einbeziehung aller 3D-Kamerainformationen in jeweils einen integrierten Ansatz ist eine logische Konsequenz und steht im Vordergrund der Verfahrensentwicklungen. Zum einen stützen sich die komplementären Eigenschaften der Beobachtungen durch die Herstellung des funktionalen Zusammenhangs der Messkanäle gegenseitig, wodurch Genauigkeits- und Zuverlässigkeitssteigerungen zu erwarten sind. Zum anderen gewährleistet das um eine Varianzkomponentenschätzung erweiterte stochastische Modell eine vollständige Ausnutzung des heterogenen Informationshaushalts. Die entwickelte integrierte Bündelblockausgleichung ermöglicht die Bestimmung der exakten 3D-Kamerageometrie sowie die Schätzung der distanzmessspezifischen Korrekturparameter zur Modellierung linearer, zyklischer und signalwegeffektbedingter Fehleranteile einer 3D-Kamerastreckenmessung. Die integrierte Kalibrierroutine gleicht in beiden Informationskanälen gemessene Größen gemeinsam, unter der automatischen Schätzung optimaler Beobachtungsgewichte, aus. Die Methode basiert auf dem flexiblen Prinzip einer Selbstkalibrierung und benötigt keine Objektrauminformation, wodurch insbesondere die aufwendige Ermittlung von Referenzstrecken übergeordneter Genauigkeit entfällt. Die durchgeführten Genauigkeitsuntersuchungen bestätigen die Richtigkeit der aufgestellten funktionalen Zusammenhänge, zeigen aber auch Schwächen aufgrund noch nicht parametrisierter distanzmessspezifischer Fehler. Die Adaptivität und die modulare Implementierung des entwickelten mathematischen Modells gewährleisten aber eine zukünftige Erweiterung. Die Qualität der 3D-Neupunktkoordinaten kann nach einer Kalibrierung mit 5 mm angegeben werden. Für die durch eine Vielzahl von meist simultan auftretenden Rauschquellen beeinflusste Tiefenbildtechnologie ist diese Genauigkeitsangabe sehr vielversprechend, vor allem im Hinblick auf die Entwicklung von auf korrigierten 3D-Kameradaten aufbauenden Auswertealgorithmen. 2,5D Least Squares Tracking (LST) ist eine im Rahmen der Dissertation entwickelte integrierte spatiale und temporale Zuordnungsmethode zur Auswertung von 3D-Kamerabildsequenzen. Der Algorithmus basiert auf der in der Photogrammetrie bekannten Bildzuordnung nach der Methode der kleinsten Quadrate und bildet kleine Oberflächensegmente konsekutiver 3D-Kameradatensätze aufeinander ab. Die Abbildungsvorschrift wurde, aufbauend auf einer 2D-Affintransformation, an die Datenstruktur einer 3D-Kamera angepasst. Die geschlossen formulierte Parametrisierung verknüpft sowohl Grau- als auch Entfernungswerte in einem integrierten Modell. Neben den affinen Parametern zur Erfassung von Translations- und Rotationseffekten, modellieren die Maßstabs- sowie Neigungsparameter perspektivbedingte Größenänderungen des Bildausschnitts, verursacht durch Distanzänderungen in Aufnahmerichtung. Die Eingabedaten sind in einem Vorverarbeitungsschritt mit Hilfe der entwickelten Kalibrierroutine um ihre opto- und distanzmessspezifischen Fehler korrigiert sowie die gemessenen Schrägstrecken auf Horizontaldistanzen reduziert worden. 2,5D-LST liefert als integrierter Ansatz vollständige 3D-Verschiebungsvektoren. Weiterhin können die aus der Fehlerrechnung resultierenden Genauigkeits- und Zuverlässigkeitsangaben als Entscheidungskriterien für die Integration in einer anwendungsspezifischen Verarbeitungskette Verwendung finden. Die Validierung des Verfahrens zeigte, dass die Einführung komplementärer Informationen eine genauere und zuverlässigere Lösung des Korrespondenzproblems bringt, vor allem bei schwierigen Kontrastverhältnissen in einem Kanal. Die Genauigkeit der direkt mit den Distanzkorrekturtermen verknüpften Maßstabs- und Neigungsparameter verbesserte sich deutlich. Darüber hinaus brachte die Erweiterung des geometrischen Modells insbesondere bei der Zuordnung natürlicher, nicht gänzlich ebener Oberflächensegmente signifikante Vorteile. Die entwickelte flächenbasierte Methode zur Objektzuordnung und Objektverfolgung arbeitet auf der Grundlage berührungslos aufgenommener 3D-Kameradaten. Sie ist somit besonders für Aufgabenstellungen der 3D-Bewegungsanalyse geeignet, die den Mehraufwand einer multiokularen Experimentalanordnung und die Notwendigkeit einer Objektsignalisierung mit Zielmarken vermeiden möchten. Das Potential des 3D-Kamerazuordnungsansatzes wurde an zwei Anwendungsszenarien der menschlichen Verhaltensforschung demonstriert. 2,5D-LST kam zur Bestimmung der interpersonalen Distanz und Körperorientierung im erziehungswissenschaftlichen Untersuchungsgebiet der Konfliktregulation befreundeter Kindespaare ebenso zum Einsatz wie zur Markierung und anschließenden Klassifizierung von Bewegungseinheiten sprachbegleitender Handgesten. Die Implementierung von 2,5D-LST in die vorgeschlagenen Verfahren ermöglichte eine automatische, effektive, objektive sowie zeitlich und räumlich hochaufgelöste Erhebung und Auswertung verhaltensrelevanter Daten. Die vorliegende Dissertation schlägt die Verwendung einer neuartigen 3D-Tiefenbildkamera zur Erhebung menschlicher Verhaltensdaten vor. Sie präsentiert sowohl ein zur Datenaufbereitung entwickeltes Kalibrierwerkzeug als auch eine Methode zur berührungslosen Bestimmung dichter 3D-Bewegungsvektorfelder. Die Arbeit zeigt, dass die Methoden der Photogrammetrie auch für bewegungsanalytische Aufgabenstellungen auf dem bisher noch wenig erschlossenen Gebiet der Verhaltensforschung wertvolle Ergebnisse liefern können. Damit leistet sie einen Beitrag für die derzeitigen Bestrebungen in der automatisierten videographischen Erhebung von Körperbewegungen in dyadischen Interaktionen. / The three-dimensional documentation of the form and location of any type of object using flexible photogrammetric methods and procedures plays a key role in a wide range of technical-industrial and scientific areas of application. Potential applications include measurement tasks in the automotive, machine building and ship building sectors, the compilation of complex 3D models in the fields of architecture, archaeology and monumental preservation and motion analyses in the fields of flow measurement technology, ballistics and medicine. In the case of close-range photogrammetry a variety of optical 3D measurement systems are used. Area sensor cameras arranged in single or multi-image configurations are used besides active triangulation procedures for surface measurement (e.g. using structured light or laser scanner systems). The use of modulation techniques enables 3D cameras based on photomix detectors or similar principles to simultaneously produce both a grey value image and a range image. Functioning as single image sensors, they deliver spatially resolved surface data at video rate without the need for stereoscopic image matching. In the case of 3D motion analyses in particular, this leads to considerable reductions in complexity and computing time. 3D cameras combine the practicality of a digital camera with the 3D data acquisition potential of conventional surface measurement systems. Despite the relatively low spatial resolution currently achievable, as a monosensory real-time depth image acquisition system they represent an interesting alternative in the field of 3D motion analysis. The use of 3D cameras as measuring instruments requires the modelling of deviations from the ideal projection model, and indeed the processing of the 3D camera data generated requires the targeted adaptation, development and further development of procedures in the fields of computer graphics and photogrammetry. This Ph.D. thesis therefore focuses on the development of methods of sensor calibration and 3D motion analysis in the context of investigations into inter-human motion behaviour. As a result of its intrinsic design and measurement principle, a 3D camera simultaneously provides amplitude and range data reconstructed from a measurement signal. The simultaneous integration of all data obtained using a 3D camera into an integrated approach is a logical consequence and represents the focus of current procedural development. On the one hand, the complementary characteristics of the observations made support each other due to the creation of a functional context for the measurement channels, with is to be expected to lead to increases in accuracy and reliability. On the other, the expansion of the stochastic model to include variance component estimation ensures that the heterogeneous information pool is fully exploited. The integrated bundle adjustment developed facilitates the definition of precise 3D camera geometry and the estimation of range-measurement-specific correction parameters required for the modelling of the linear, cyclical and latency defectives of a distance measurement made using a 3D camera. The integrated calibration routine jointly adjusts appropriate dimensions across both information channels, and also automatically estimates optimum observation weights. The method is based on the same flexible principle used in self-calibration, does not require spatial object data and therefore foregoes the time-consuming determination of reference distances with superior accuracy. The accuracy analyses carried out confirm the correctness of the proposed functional contexts, but nevertheless exhibit weaknesses in the form of non-parameterized range-measurement-specific errors. This notwithstanding, the future expansion of the mathematical model developed is guaranteed due to its adaptivity and modular implementation. The accuracy of a new 3D point coordinate can be set at 5 mm further to calibration. In the case of depth imaging technology – which is influenced by a range of usually simultaneously occurring noise sources – this level of accuracy is very promising, especially in terms of the development of evaluation algorithms based on corrected 3D camera data. 2.5D Least Squares Tracking (LST) is an integrated spatial and temporal matching method developed within the framework of this Ph.D. thesis for the purpose of evaluating 3D camera image sequences. The algorithm is based on the least squares image matching method already established in photogrammetry, and maps small surface segments of consecutive 3D camera data sets on top of one another. The mapping rule has been adapted to the data structure of a 3D camera on the basis of a 2D affine transformation. The closed parameterization combines both grey values and range values in an integrated model. In addition to the affine parameters used to include translation and rotation effects, the scale and inclination parameters model perspective-related deviations caused by distance changes in the line of sight. A pre-processing phase sees the calibration routine developed used to correct optical and distance-related measurement specific errors in input data and measured slope distances reduced to horizontal distances. 2.5D LST is an integrated approach, and therefore delivers fully three-dimensional displacement vectors. In addition, the accuracy and reliability data generated by error calculation can be used as decision criteria for integration into an application-specific processing chain. Process validation showed that the integration of complementary data leads to a more accurate, reliable solution to the correspondence problem, especially in the case of difficult contrast ratios within a channel. The accuracy of scale and inclination parameters directly linked to distance correction terms improved dramatically. In addition, the expansion of the geometric model led to significant benefits, and in particular for the matching of natural, not entirely planar surface segments. The area-based object matching and object tracking method developed functions on the basis of 3D camera data gathered without object contact. It is therefore particularly suited to 3D motion analysis tasks in which the extra effort involved in multi-ocular experimental settings and the necessity of object signalling using target marks are to be avoided. The potential of the 3D camera matching approach has been demonstrated in two application scenarios in the field of research into human behaviour. As in the case of the use of 2.5D LST to mark and then classify hand gestures accompanying verbal communication, the implementation of 2.5D LST in the proposed procedures for the determination of interpersonal distance and body orientation within the framework of pedagogical research into conflict regulation between pairs of child-age friends facilitates the automatic, effective, objective and high-resolution (from both a temporal and spatial perspective) acquisition and evaluation of data with relevance to behaviour. This Ph.D. thesis proposes the use of a novel 3D range imaging camera to gather data on human behaviour, and presents both a calibration tool developed for data processing purposes and a method for the contact-free determination of dense 3D motion vector fields. It therefore makes a contribution to current efforts in the field of the automated videographic documentation of bodily motion within the framework of dyadic interaction, and shows that photogrammetric methods can also deliver valuable results within the framework of motion evaluation tasks in the as-yet relatively untapped field of behavioural research.

Page generated in 0.0585 seconds