Spelling suggestions: "subject:"C*algebras."" "subject:"C*áalgebras.""
91 |
Propriedade Dunford-Pettis alternativa / The alternative Dunford-Pettis propertyNeves, Veronica Leão 26 June 2015 (has links)
Este trabalho tem como objetivo estudar a propriedade Dunford-Pettis alternativa (propriedade DP1), como introduzida por Freedman, e algumas de suas caracterizações e relações com outras propriedades. Estudamos caracterizações para alguns espaços de operadores com a propriedade DP1, dadas por Acosta e Peralta. Vimos que um subespaço fechado do espaço dos operadores compactos em um espaço de Banach reflexivo com base de Schauder tem a propriedade DP1 se, e somente se, os operadores avaliação são operadores DP1. Estudamos um resultado análogo para espaços de Hilbert. Como consequência desses resultados, vimos uma caracterização de certas subálgebras fechadas da álgebra dos operadores compactos que possuem a propriedade DP1, supondo que os operadores composição à direita e à esquerda são operadores DP1. Finalmente, estudamos a demonstração feita por Bunce e Peralta de que as propriedades Dunford-Pettis e Duford-Pettis alternativa são equivalentes em C*-álgebras. / The main purpose of this work is to study the alternative Dunford-Pettis property (DP1 property), as introduced by Freedman, and some characterizations of the DP1 property and relations of this to other properties. We studied a characterization of certain operator subspaces which have the DP1 property, as given by Acosta and Peralta in \\cite. We saw that a closed subspace of the compact operators space in a reflexive Banach space with Schauder basis has the DP1 property if, and only if, the evaluation operators are DP1 operators. We studied a similar result for Hilbert spaces. Consequently, we also saw a characterization of certain closed subalgebras of the compact operators algebra, in which the DP1 property is held by assuming that the right and left composition operators are DP1. Finally, we studied the proof given by Bunce and Peralta that the Dunford-Pettis property and the alternative Duford-Pettis property are equivalent for C*-algebras.
|
92 |
O teorema espectral e a propriedade de \"self-adjointness\" para alguns operadores de Schrödinger / The spectral theorem and the self-adjointness property for some Schrödinger operatorsRodrigo Augusto Higo Mafra Cabral 18 December 2014 (has links)
Neste texto são demonstrados, a partir do ponto de vista da teoria dos espaços de Hilbert e da teoria das C*-álgebras, teoremas relacionados a operadores auto-adjuntos em espaços de Hilbert, entre os quais estão o Teorema Espectral, o teorema de Kato-Rellich e a desigualdade de Kato. Também são dadas aplicações destes teoremas a alguns operadores de Schrödinger provenientes da Física-Matemática. / In this text we prove, within the Hilbert spaces theory and C*-algebras points of view, some theorems which are related to self-adjoint operators acting on Hilbert spaces, among which are the Spectral Theorem, the Kato-Rellich theorem and Kato\'s inequality. Also, some applications to Schrödinger operators coming from the Mathematical-Physics context are given.
|
93 |
O teorema espectral e a propriedade de \"self-adjointness\" para alguns operadores de Schrödinger / The spectral theorem and the self-adjointness property for some Schrödinger operatorsCabral, Rodrigo Augusto Higo Mafra 18 December 2014 (has links)
Neste texto são demonstrados, a partir do ponto de vista da teoria dos espaços de Hilbert e da teoria das C*-álgebras, teoremas relacionados a operadores auto-adjuntos em espaços de Hilbert, entre os quais estão o Teorema Espectral, o teorema de Kato-Rellich e a desigualdade de Kato. Também são dadas aplicações destes teoremas a alguns operadores de Schrödinger provenientes da Física-Matemática. / In this text we prove, within the Hilbert spaces theory and C*-algebras points of view, some theorems which are related to self-adjoint operators acting on Hilbert spaces, among which are the Spectral Theorem, the Kato-Rellich theorem and Kato\'s inequality. Also, some applications to Schrödinger operators coming from the Mathematical-Physics context are given.
|
94 |
Uma descrição das aplicações de conexão em K-teoria de C*-álgebras usando cones / A description of the connecting maps in K-theory for C*-algebras using conesMaekawa, Renata Akemi 04 April 2014 (has links)
Dada uma aplicação f: B -> A entre duas C*-álgebras, o cone dessa aplicação, Cf, é o conjunto formado pelos pares (b,g) pertencentes à soma direta da C*-álgebra B com o cone CA tais que f(b) = g(0), sendo CA o cone de A. Neste trabalho estudamos o funtor determinado pela associação da sequência exata curta 0 -> SA -> Cf -> B -> 0 para cada *-homomorfismo f: B -> A, e demonstramos que esse funtor é exato. Caracterizamos as aplicações de conexão associadas à sequência exata 0 -> SA -> Cf -> B -> 0, mostrando que a aplicação do índice é dada por tAK1(f) e que a aplicação exponencial é dada por bAK0(f), sendo tA o isomorfismo entre K1(A) e K0(SA) e bA a aplicação de Bott. Por fim, usando que toda sequência exata curta de C*-álgebras pode ser vista na forma 0 -> Ker f -> B -> A -> 0, mostramos que as aplicações de conexão d1 e d0 associadas a cada sequência exata curta podem ser dadas por dn = Kn+1(j)-1 Kn+1(i) hn, em que j é a inclusão do núcleo de f em Cf, i é a inclusão da suspensão SA também em Cf, hn = bA e h1 = tA . / If f: B A is a map between the C*-algebras A and B, the mapping cone is the set of pairs (b,g) in the direct sum of B and CA such that f(b) = g(0), where CA is the cone of A. In this work, we study the functor determined by the assignment of the exact sequence 0 SA Cf B 0 to each *-homomorphism f: B -> A, and we show that this functor is exact. We characterize the connecting maps associated with the short exact sequence 0 SA Cf B 0 and we prove that its index map is tA K1(f) and that its exponential map is bA K0(f), where tA is the isomorphism between K1(A) and K0(SA), and bA is the Bott map. Finally, using that every short exact sequence of C*-algebras can be seen as 0 Ker f B (f ) A 0, we prove that the connecting maps, d1 and d0, associated with a short exact sequence are given by dn = Kn+1(j)-1 Kn+1(i) hn, where j is the inclusion of f\'s kernel in Cf, i is the inclusion of the suspension SA in Cf, hn = bA e h1 = tA .
|
95 |
O caráter de Chern-Connes para C*-sistemas dinâmicos calculado em algumas álgebras de operadores pseudodiferenciais / The C*-dynamical system Chern-Connes character computed in some pseudodifferential operators algebrasDias, David Pires 11 April 2008 (has links)
Dado um C$^*$-sistema dinâmico $(A, G, \\alpha)$ define-se um homomorfismo, denominado de caráter de Chern-Connes, que leva elementos de $K_0(A) \\oplus K_1(A)$, grupos de K-teoria da C$^*$-álgebra $A$, em $H_{\\mathbb}^*(G)$, anel da cohomologia real de deRham do grupo de Lie $G$. Utilizando essa definição, nós calculamos explicitamente esse homomorfismo para os exemplos $(\\overline{\\Psi_^0(S^1)}, S^1, \\alpha)$ e $(\\overline{\\Psi_^0(S^2)}, SO(3), \\alpha)$, onde $\\overline{\\Psi_^0(M)}$ denota a C$^*$-álgebra gerada pelos operadores pseudodiferenciais clássicos de ordem zero da variedade $M$ e $\\alpha$ a ação de conjugação pela representação regular (translações). / Given a C$^*$-dynamical system $(A, G, \\alpha)$ one defines a homomorphism, called the Chern-Connes character, that take an element in $K_0(A) \\oplus K_1(A)$, the K-theory groups of the C$^*$-algebra $A$, and maps it into $H_{\\mathbb}^*(G)$, the real deRham cohomology ring of $G$. We explictly compute this homomorphism for the examples $(\\overline{\\Psi_^0(S^1)}, S^1, \\alpha)$ and $(\\overline{\\Psi_^0(S^2)}, SO(3), \\alpha)$, where $\\overline{\\Psi_^0(M)}$ denotes the C$^*$-álgebra gene\\-rated by the classical pseudodifferential operators of zero order in the manifold $M$ and $\\alpha$ the action of conjugation by the regular representation (translations).
|
96 |
O caráter de Chern-Connes para C*-sistemas dinâmicos calculado em algumas álgebras de operadores pseudodiferenciais / The C*-dynamical system Chern-Connes character computed in some pseudodifferential operators algebrasDavid Pires Dias 11 April 2008 (has links)
Dado um C$^*$-sistema dinâmico $(A, G, \\alpha)$ define-se um homomorfismo, denominado de caráter de Chern-Connes, que leva elementos de $K_0(A) \\oplus K_1(A)$, grupos de K-teoria da C$^*$-álgebra $A$, em $H_{\\mathbb}^*(G)$, anel da cohomologia real de deRham do grupo de Lie $G$. Utilizando essa definição, nós calculamos explicitamente esse homomorfismo para os exemplos $(\\overline{\\Psi_^0(S^1)}, S^1, \\alpha)$ e $(\\overline{\\Psi_^0(S^2)}, SO(3), \\alpha)$, onde $\\overline{\\Psi_^0(M)}$ denota a C$^*$-álgebra gerada pelos operadores pseudodiferenciais clássicos de ordem zero da variedade $M$ e $\\alpha$ a ação de conjugação pela representação regular (translações). / Given a C$^*$-dynamical system $(A, G, \\alpha)$ one defines a homomorphism, called the Chern-Connes character, that take an element in $K_0(A) \\oplus K_1(A)$, the K-theory groups of the C$^*$-algebra $A$, and maps it into $H_{\\mathbb}^*(G)$, the real deRham cohomology ring of $G$. We explictly compute this homomorphism for the examples $(\\overline{\\Psi_^0(S^1)}, S^1, \\alpha)$ and $(\\overline{\\Psi_^0(S^2)}, SO(3), \\alpha)$, where $\\overline{\\Psi_^0(M)}$ denotes the C$^*$-álgebra gene\\-rated by the classical pseudodifferential operators of zero order in the manifold $M$ and $\\alpha$ the action of conjugation by the regular representation (translations).
|
97 |
Uma descrição das aplicações de conexão em K-teoria de C*-álgebras usando cones / A description of the connecting maps in K-theory for C*-algebras using conesRenata Akemi Maekawa 04 April 2014 (has links)
Dada uma aplicação f: B -> A entre duas C*-álgebras, o cone dessa aplicação, Cf, é o conjunto formado pelos pares (b,g) pertencentes à soma direta da C*-álgebra B com o cone CA tais que f(b) = g(0), sendo CA o cone de A. Neste trabalho estudamos o funtor determinado pela associação da sequência exata curta 0 -> SA -> Cf -> B -> 0 para cada *-homomorfismo f: B -> A, e demonstramos que esse funtor é exato. Caracterizamos as aplicações de conexão associadas à sequência exata 0 -> SA -> Cf -> B -> 0, mostrando que a aplicação do índice é dada por tAK1(f) e que a aplicação exponencial é dada por bAK0(f), sendo tA o isomorfismo entre K1(A) e K0(SA) e bA a aplicação de Bott. Por fim, usando que toda sequência exata curta de C*-álgebras pode ser vista na forma 0 -> Ker f -> B -> A -> 0, mostramos que as aplicações de conexão d1 e d0 associadas a cada sequência exata curta podem ser dadas por dn = Kn+1(j)-1 Kn+1(i) hn, em que j é a inclusão do núcleo de f em Cf, i é a inclusão da suspensão SA também em Cf, hn = bA e h1 = tA . / If f: B A is a map between the C*-algebras A and B, the mapping cone is the set of pairs (b,g) in the direct sum of B and CA such that f(b) = g(0), where CA is the cone of A. In this work, we study the functor determined by the assignment of the exact sequence 0 SA Cf B 0 to each *-homomorphism f: B -> A, and we show that this functor is exact. We characterize the connecting maps associated with the short exact sequence 0 SA Cf B 0 and we prove that its index map is tA K1(f) and that its exponential map is bA K0(f), where tA is the isomorphism between K1(A) and K0(SA), and bA is the Bott map. Finally, using that every short exact sequence of C*-algebras can be seen as 0 Ker f B (f ) A 0, we prove that the connecting maps, d1 and d0, associated with a short exact sequence are given by dn = Kn+1(j)-1 Kn+1(i) hn, where j is the inclusion of f\'s kernel in Cf, i is the inclusion of the suspension SA in Cf, hn = bA e h1 = tA .
|
98 |
Propriedade Dunford-Pettis alternativa / The alternative Dunford-Pettis propertyVeronica Leão Neves 26 June 2015 (has links)
Este trabalho tem como objetivo estudar a propriedade Dunford-Pettis alternativa (propriedade DP1), como introduzida por Freedman, e algumas de suas caracterizações e relações com outras propriedades. Estudamos caracterizações para alguns espaços de operadores com a propriedade DP1, dadas por Acosta e Peralta. Vimos que um subespaço fechado do espaço dos operadores compactos em um espaço de Banach reflexivo com base de Schauder tem a propriedade DP1 se, e somente se, os operadores avaliação são operadores DP1. Estudamos um resultado análogo para espaços de Hilbert. Como consequência desses resultados, vimos uma caracterização de certas subálgebras fechadas da álgebra dos operadores compactos que possuem a propriedade DP1, supondo que os operadores composição à direita e à esquerda são operadores DP1. Finalmente, estudamos a demonstração feita por Bunce e Peralta de que as propriedades Dunford-Pettis e Duford-Pettis alternativa são equivalentes em C*-álgebras. / The main purpose of this work is to study the alternative Dunford-Pettis property (DP1 property), as introduced by Freedman, and some characterizations of the DP1 property and relations of this to other properties. We studied a characterization of certain operator subspaces which have the DP1 property, as given by Acosta and Peralta in \\cite. We saw that a closed subspace of the compact operators space in a reflexive Banach space with Schauder basis has the DP1 property if, and only if, the evaluation operators are DP1 operators. We studied a similar result for Hilbert spaces. Consequently, we also saw a characterization of certain closed subalgebras of the compact operators algebra, in which the DP1 property is held by assuming that the right and left composition operators are DP1. Finally, we studied the proof given by Bunce and Peralta that the Dunford-Pettis property and the alternative Duford-Pettis property are equivalent for C*-algebras.
|
99 |
Quantification de groupes p-adiques et applications aux algèbres d'opérateurs. / Quantization of p-adic groups and applications to operator algebras.Jondreville, David 26 June 2017 (has links)
Cette thèse est consacrée à l'étude des déformations des C*-algèbres munies d'une action de groupe, du point de vue de la quantification équivariante non-formelle, dans le cas non-archimédien. Nous construisons une théorie de déformation des C*-algèbres munies d'une action d'un espace vectoriel de dimension finie sur un corps local non-archimédien de caractéristique différente de 2 ainsi que pour des quotients du groupe affine d'un corps local dont le corps résiduel est de cardinal impair. Par ailleurs, nous construisons des familles de 2-cocycles unitaires afin de déformer des groupes quantiques localement compacts agissant sur ces C*-algèbres déformées. / This thesis is devoted to the study of deformation of C*-algebras endowed with a group action, from the perspective of non-formal equivariant quantization, in the non-Archimedean setting. We construct a deformation theory of C*-algebras endowed with an action of a finite dimensional vector space over a non-Archimedean local field of characteristic different from 2 and for quotients of the affine group of a local field whose residue field has cardinality not divisible by 2. Moreover, we construct families of dual unitary 2-cocycles in order to deform locally compact quantum groups acting on these deformed C*-algebras.
|
100 |
Relações de dispersão deformadas na cosmologia inflacionária / Dispersion relations in inflationary cosmologyUlisses Diego Almeida Santos Machado 24 September 2012 (has links)
Relação de dispersão é outro nome para a função Hamiltoniana, cujo conhecimento especica completamente a dinâmica de um sistema no formalismo da mecânica classica. Sua escolha está intimamente vinculada às simetrias do sistema e, no contexto cosmologico aqui apresentado, com as simetrias locais obedecidas pelas leis fsicas. Mais ainda, a contribuição da materia na dinâmica cosmologica reflete a escolha do grupo local de simetrias das leis fsicas. Por outro lado, o problema fundamental da cosmologia pode ser definido como a construção de um modelo de evolução temporal de estados que, sob as hipoteses mais simples sobre estados iniciais (digamos, que demande a menor quantidade de informação possível para serem enunciadas), prediga o estado atual observado. O paradigma inacionario é atualmente a ideia que melhor cumpre esta denição, uma vez que prediz que uma grande variedade de condições iniciais leva a aspectos fundamentais do universo observado. Contudo, os mecanismos usuais de realização da inflação sofrem de problemas conceituais. O ponto de vista deste trabalho e que a realização convencional da inflação, isto é, atraves dos campos escalares minimamente acoplados, é a formulação localmente relativisticamente invariante da inflação. A maneira de incluir quebras e deformações da estrutura de simetrias locais na cosmologia é não única e está associado ao chamado problema trans Planckiano da inflação. Analogamente, a motivação conceitual para incluir esse tipo de modicação tampouco é unica. Dependendo do esquema de realização, a versão localmente não relativstica da mesma pode apresentar graves diculdades de conciliação com observações atuais, ou apresentar vantagens conceituais em relacão ao modelo padrão de inflacão, enquanto em conformidade com observações cosmológicas. Da maneira como foi posto o problema fundamental da cosmologia, a escolha das simetrias locais influi na regra de evolução dos estados. O conceito de simetrias encontra sua formulação independente de teorias físicas no formalismo da teoria de grupos, mas consideraremos uma extensão da ideia, de aplicabilidade mais geral, a teoria das algebras de Hopf que, de certo modo, trata das simetrias de estruturas algebricas. Esta extensão é útil inclusive no trato de simetrias dos espacos não comutativos, uma das principais propostas fsicas que em última analise afeta a estrutura de simetrias locais do espaco-tempo. A expressão simetrias locais, por si só, não diz muito sem a consideração de regras de realização. Essas regras dependem da estrutura matematica das observaveis da teoria. Sob hipoteses muito gerais, que não especicam uma teoria em particular, é possível mostrar, não como um teorema matematico formal, mas como uma hipotese tecnicamente bem motivada, que existem apenas dois tipos de teorias fsicas: as classicas e as quânticas. Trabalharemos sob essas hipoteses, as quais se formulam algebricamente assumindo a estrutura de C*-álgebra para as observaveis físicas, outra motivação para o uso das álgebras de Hopf para descrição das simetrias da natureza. / Dispersion relation is another name for the Hamiltonian function whose knowledge completely specifies the dynamics in the formalism of classical mechanics. Its choice is intimately related to the symmetries of the system, and, in the cosmological context here exposed, with the local space-time symmetries obeyed by physical laws. For the other side, the fundamental problem of cosmology can be defined as a construction of a time evolution model of states which, under simplest possible hypothesis concerning initial conditions (say, which demands the minimal amount of information to be specified), predicts the present observed state. The inflationary paradigm is currently the idea which better accomplishes this definition, since it predicts that a great variety of initial conditions lead to essential aspects of observed universe. The usual mechanisms of inflation suffer, however, with conceptual problems. The point of view of this work is that the usual realization of inflation based on weakly coupled scalar fields is the local relativistic invariant realization. The way of including breaks and deformations of the local space-time symmetries is not unique and it is associated to the so called Trans-Planckian problem of inflation. Analogously, the motivation to include this kind of modification is neither unique. Depending of the scheme of realization, the locally non-relativistic version may lead to serious difficulties in conciliation with observations, or to conceptual advantages over standard formulations while in accordance with observational data. In the way that was proposed the fundamental problem of cosmology, the choice of local symmetries affects the rule of evolution of states. The concept of symmetry finds its formulation independently of physical theories in the group theory formalism, but we will consider an extension of the idea, with wider applicability, the theory of Hopf algebras, which is about symmetries of algebraic structures. That extension is also useful to deal with symmetries of non-commutative spaces, one of the main physical proposals that affects the structure of space-time symmetries. The expression, local symmetries, by itself, does not say too much without considering realization rules. Those rules depend on mathematical structure of observables in the theory. Under very general hypothesis that do not specify a particular theory, it is possible to show, not as a formal mathematical theorem, but as a technically well motivated hypothesis, that only two types of physical theories do exist: The classical ones and the quantum ones. We are going to work under those hypothesis, which can be algebraically formulated assuming a C*-algebra structure for physical observables, another motivation for the use of algebraic structures like Hopf algebras for the description of nature\'s symmetries
|
Page generated in 0.0514 seconds