• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 257
  • 9
  • 2
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 271
  • 271
  • 157
  • 105
  • 58
  • 37
  • 35
  • 35
  • 34
  • 29
  • 26
  • 25
  • 23
  • 22
  • 22
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Elaboração e caracterização de camada de difusão de gás para células a combustível do tipo PEMFC

Santos, Jhuly Gleice Nascimento dos January 2011 (has links)
Células a combustível de membrana trocadora de prótons (PEMFC) são dispositivos promissores para a conversão de energia em aplicações portáteis e estacionárias. Seu desempenho é fortemente influenciado pelas características da sua camada de difusão de gás (GDL), tais como morfologia, condutividade elétrica, porosidade, estabilidade química e resistência mecânica. A GDL também deve mostrar um equilíbrio entre hidrofobicidade e hidrofilicidade para garantir que o sistema operacional da célula funcione sem obstrução das vias de fluxo de gases, mas ainda mantendo uma umidade adequada. Neste trabalho, um processo simples foi desenvolvido para produzir GDL para PEMFC, visando obter um material alternativo aos já existentes no mercado como o tecido e o papel de carbono reduzindo o custo do produto final. As GDLs foram produzidas com fibras de carbono curtas dispersas em resina poliuretana (PU), seguida de prensagem a quente. Após o processo de tratamento térmico, as GDL foram tratadas, em uma suspensão contendo nanopartículas de carbono dispersas na solução de PTFE, através do processo de dip-coating. Estudou-se a influência da razão PU: fibra de carbono, e o teor de nanopartículas de carbono Vulcan adicionado à resina PU. As GDL obtidas foram caracterizadas quanto à morfologia, condutividade elétrica, análise térmica, ângulo de contato e ensaio de tração. Os resultados mostraram que a melhor proporção de resina PU:fibra de carbono foi de 1:1, que apresentou uma menor resistividade (2,68 × 10-5 Ω.m). Nas GDLs pós-tratadas com PTFE contendo diferentes teores de nanopartículas de carbono VULCAN, o melhor resultado obtido foram das amostras do sistema de proporção PU:fibra de carbono com 0,20 g de nanopartículas de carbono Vulcan na solução de PTFE (PU1:1_0,20). Esse sistema apresentou bons resultados quanto à hidrofobicidade, apresentando ângulo de contato (105°-126°) e de resistividade (da ordem de 10-5 Ω.m). Além disso, as GDLs obtidas com adição de carbono Vulcan na resina PU (1:1) obtiveram ótimos resultados de ângulo de contato (129°-138°) e resistividade (da ordem de 10-3-10-5 Ω.m), porém com baixa resistência mecânica e em todos os sistemas estudados pode-se verificar uma boa dispersão da fibras na resina PU através da análise por MEV. Os resultados em geral indicam que o material obtido tem potencial aplicação em células do tipo PEMFC. / Proton exchange membrane fuel cells (PEMFC) are promising devices for energy conversion for portable and stationary applications. Their performance is strongly influenced by the characteristics of their gas diffusion layer (GDL) such as morphology, electrical conductivity, porosity, chemical stability and mechanical strength. The GDL must also show a balance between hydrophobicity and hydrophilicity to ensure that the fuel cell system operates without obstruction of gas flow but maintaining adequate moisture content. In this work, a simple process was developed to produce GDL for PEMFC, seeking to obtain an alternative material whilst helping reducing the overall cost. The GDLs were produced by dispersing short carbon fibers in a polyurethane (PU) resin, followed by hot pressing/curing and dip-coating in a suspension of carbon nanoparticles in PTFE solution. After the curing process, the GDL’s were treated in a suspension containing carbon nanoparticles in a solution of PTFE, used for dip-coating process. The influence of PU/carbon fiber ratio and the content of Vulcan carbon powder added to the PU resin were studied. The influence of the content of Vulcan carbon powder added to the PTFE solution for the GDL’s post-treatment was also addressed. The GDL’s obtained were characterized regarding morphological (by SEM), electrical conductivity, thermal analysis, contact angle and tensile test. The following parameters were studied: the PU amount in the carbon fiber, and the content of Vulcan carbon powder in the PTFE solution and in the PU resin, focusing on the final homogeneity and electrical conductivity of the system. The results showed that the most suitable PU resin:carbon fiber ratio was 1:1, which showed the lowest resistivity (2.68 × 10-5 Ω.m). When this sample was post-treated with PTFE using different amounts of Vulcan carbon powder and immersion times, the best result was obtained for the sample with 0.20 g of carbon Vulcan nanoparticles in the solution of PTFE (PU1:1_0,20). This system showed good hydrophobicity results, contact angle (105°-126°), and resistivity in the order of 10-5 Ω.m. Besides, the GDL obtained by adding carbon Vulcan in the PU resin (1:1) showed excellent results for contact angle (129°-138°) and resistivity (~10-4 Ω.m), even though the mechanical strength was low and all the studied systems showed good fiber dispersion in PU resin as verified by SEM analysis. In general, the results indicate that the obtained material has potential use in PEMFC.
32

Estudo numérico do desempenho de uma célula de combustível de carbonato fundido

Carvalho, Luís Miguel Ribeiro Pinto de Azevedo January 2008 (has links)
Tese de mestrado integrado. Engenharia Mecânica. Faculdade de Engenharia. Universidade do Porto. 2008
33

Optimização de uma célula de combustão em pré-mistura numa caldeira

Pereira, João André Freire de Gonçalves January 2008 (has links)
Estágio realizado na Bosch Termotecnologia, S. A. e orientado pelo Eng.º Víctor Manuel Coutinho Tavares de Pinho / Tese de mestrado integrado. Engenharia Mecânica. Faculdade de Engenharia. Universidade do Porto. 2008
34

Uso de reactores de membrana na reacção de "Water-Gas Shift" para aplicação em células de combustível

Pereira, Bruno Daniel Silva January 2008 (has links)
Tese de mestrado integrado. Engenharia Química. Faculdade de Engenharia. Universidade do Porto. 2008
35

Estudo do desempenho de uma célula de combustível de membrana de permuta iónica com eléctrodos de cobre-grafite

Fernández Pérez, Patrícia January 2009 (has links)
Tese de mestrado. Fundamentos e Aplicações da Mecânica dos Fluidos. Faculdade de Engenharia. Universidade do Porto. 2009
36

High temperature polymer electrolyte membrane fuel cells : characterization, modeling and materials

Boaventura, Marta Ferreira da Silva January 2011 (has links)
Tese de doutoramento. Engenharia Química e Biológica. Universidade do Porto. Faculdade de Engenharia. 2011
37

Methanol steam reforming for fuel cell applications

Sá, Sandra Teixeira January 2011 (has links)
Tese de doutoramento. Engenharia Química e Biológica. Universidade do Porto. Faculdade de Engenharia. 2011
38

Hydrogen production by catalytic decomposition of methane

Cunha, Adelino Filipe Carrapatoso January 2009 (has links)
Tese de doutoramento. Engenharia Química e Biológica. Faculdade de Engenharia. Universidade do Porto. 2009
39

A tração elétrica como alternativa para o transporte urbano

Bueno, Alexandre Garcia January 2004 (has links)
Este trabalho foi desenvolvido com a finalidade de reunir o conhecimento necessário para a aplicação da tração elétrica no transporte urbano e, desta maneira, auxiliar na diminuição dos impactos nocivos causados pelo homem ao meio ambiente. É sabido que 80% das emissões jogadas na atmosfera provém do escapamento de veículos equipados com motores de combustão interna. Estas emissões são responsáveis diretas pelo chamado efeito estufa que notoriamente tem causado alterações climáticas indesejadas em nosso planeta. Segundo especialistas, estas alterações no clima já estão ocasionando quebras na produção agrícola, doenças respiratórias e outros problemas sociais. Visando minimizar estes danos ao ambiente, várias empresas já concluíram que faz-se necessário desenvolver uma tecnologia para tornar nossos veículos menos poluentes. Uma das tecnologias pesquisadas e que mais tem prosperado ultimamente é a da célula de combustível. Independentemente da tecnologia a ser adotada, já é consenso entre os pesquisadores e engenheiros que a tração elétrica será o sistema adotado nos futuros veículos. Seja movido à célula de combustível, baterias ou outro meio, o motor elétrico será o componente principal do veículo do futuro. É imperativo que a tecnologia da tração elétrica seja dominada de maneira a permitir que países em desenvolvimento também possam projetar veículos limpos e assim participar do esforço mundial por um futuro livre do efeito estufa Vários países já exploram as vantagens do veículo elétrico. Pode-se encontrar disponíveis comercialmente opções variadas que vão desde motonetas até caminhões e ônibus elétricos. Ainda assim o veículo elétrico não apresenta um preço compatível com a renda da maioria dos habitantes de países em desenvolvimento. Como alternativa a este problema pode-se adotar o processo em que um veículo convencional equipado com motor de combustão interna é convertido para operar através da tração elétrica. Este processo requer um conhecimento específico já que exige habilidade para especificar a potência nominal do motor (e conseqüentemente a faixa de torque em que este operará) e a capacidade do banco de baterias para que se possa atingir a autonomia desejada para o veículo. Para tal fim, o trabalho descreve e valida, através de experimentação, o método proposto pela Bosch para a determinação dos coeficientes de arrasto aerodinâmico e de rolamento. De posse destes coeficientes é possível especificar o motor e baterias a serem utilizados na conversão. Este trabalho demonstra ainda que o veículo elétrico proporciona mais economia em relação ao veículo convencional ao mesmo tempo que ajuda a reduzir drasticamente a emissão de gases geradores do efeito estufa.
40

Elaboração e caracterização de camada de difusão de gás para células a combustível do tipo PEMFC

Santos, Jhuly Gleice Nascimento dos January 2011 (has links)
Células a combustível de membrana trocadora de prótons (PEMFC) são dispositivos promissores para a conversão de energia em aplicações portáteis e estacionárias. Seu desempenho é fortemente influenciado pelas características da sua camada de difusão de gás (GDL), tais como morfologia, condutividade elétrica, porosidade, estabilidade química e resistência mecânica. A GDL também deve mostrar um equilíbrio entre hidrofobicidade e hidrofilicidade para garantir que o sistema operacional da célula funcione sem obstrução das vias de fluxo de gases, mas ainda mantendo uma umidade adequada. Neste trabalho, um processo simples foi desenvolvido para produzir GDL para PEMFC, visando obter um material alternativo aos já existentes no mercado como o tecido e o papel de carbono reduzindo o custo do produto final. As GDLs foram produzidas com fibras de carbono curtas dispersas em resina poliuretana (PU), seguida de prensagem a quente. Após o processo de tratamento térmico, as GDL foram tratadas, em uma suspensão contendo nanopartículas de carbono dispersas na solução de PTFE, através do processo de dip-coating. Estudou-se a influência da razão PU: fibra de carbono, e o teor de nanopartículas de carbono Vulcan adicionado à resina PU. As GDL obtidas foram caracterizadas quanto à morfologia, condutividade elétrica, análise térmica, ângulo de contato e ensaio de tração. Os resultados mostraram que a melhor proporção de resina PU:fibra de carbono foi de 1:1, que apresentou uma menor resistividade (2,68 × 10-5 Ω.m). Nas GDLs pós-tratadas com PTFE contendo diferentes teores de nanopartículas de carbono VULCAN, o melhor resultado obtido foram das amostras do sistema de proporção PU:fibra de carbono com 0,20 g de nanopartículas de carbono Vulcan na solução de PTFE (PU1:1_0,20). Esse sistema apresentou bons resultados quanto à hidrofobicidade, apresentando ângulo de contato (105°-126°) e de resistividade (da ordem de 10-5 Ω.m). Além disso, as GDLs obtidas com adição de carbono Vulcan na resina PU (1:1) obtiveram ótimos resultados de ângulo de contato (129°-138°) e resistividade (da ordem de 10-3-10-5 Ω.m), porém com baixa resistência mecânica e em todos os sistemas estudados pode-se verificar uma boa dispersão da fibras na resina PU através da análise por MEV. Os resultados em geral indicam que o material obtido tem potencial aplicação em células do tipo PEMFC. / Proton exchange membrane fuel cells (PEMFC) are promising devices for energy conversion for portable and stationary applications. Their performance is strongly influenced by the characteristics of their gas diffusion layer (GDL) such as morphology, electrical conductivity, porosity, chemical stability and mechanical strength. The GDL must also show a balance between hydrophobicity and hydrophilicity to ensure that the fuel cell system operates without obstruction of gas flow but maintaining adequate moisture content. In this work, a simple process was developed to produce GDL for PEMFC, seeking to obtain an alternative material whilst helping reducing the overall cost. The GDLs were produced by dispersing short carbon fibers in a polyurethane (PU) resin, followed by hot pressing/curing and dip-coating in a suspension of carbon nanoparticles in PTFE solution. After the curing process, the GDL’s were treated in a suspension containing carbon nanoparticles in a solution of PTFE, used for dip-coating process. The influence of PU/carbon fiber ratio and the content of Vulcan carbon powder added to the PU resin were studied. The influence of the content of Vulcan carbon powder added to the PTFE solution for the GDL’s post-treatment was also addressed. The GDL’s obtained were characterized regarding morphological (by SEM), electrical conductivity, thermal analysis, contact angle and tensile test. The following parameters were studied: the PU amount in the carbon fiber, and the content of Vulcan carbon powder in the PTFE solution and in the PU resin, focusing on the final homogeneity and electrical conductivity of the system. The results showed that the most suitable PU resin:carbon fiber ratio was 1:1, which showed the lowest resistivity (2.68 × 10-5 Ω.m). When this sample was post-treated with PTFE using different amounts of Vulcan carbon powder and immersion times, the best result was obtained for the sample with 0.20 g of carbon Vulcan nanoparticles in the solution of PTFE (PU1:1_0,20). This system showed good hydrophobicity results, contact angle (105°-126°), and resistivity in the order of 10-5 Ω.m. Besides, the GDL obtained by adding carbon Vulcan in the PU resin (1:1) showed excellent results for contact angle (129°-138°) and resistivity (~10-4 Ω.m), even though the mechanical strength was low and all the studied systems showed good fiber dispersion in PU resin as verified by SEM analysis. In general, the results indicate that the obtained material has potential use in PEMFC.

Page generated in 0.0499 seconds