• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Um modelo para redes neuronais biologicamente inspirado baseado em minimização de divergência local. / A biologically inspired neural network model based on minimizing local divergence.

SANTANA, Ewaldo Eder Carvalho. 14 August 2018 (has links)
Submitted by Johnny Rodrigues (johnnyrodrigues@ufcg.edu.br) on 2018-08-14T16:42:54Z No. of bitstreams: 1 EWALDO EDER CARVALHO SANTANA - TESE PPGEE 2009..pdf: 5646465 bytes, checksum: d83cd716193f68815a22b066836f3ae6 (MD5) / Made available in DSpace on 2018-08-14T16:42:54Z (GMT). No. of bitstreams: 1 EWALDO EDER CARVALHO SANTANA - TESE PPGEE 2009..pdf: 5646465 bytes, checksum: d83cd716193f68815a22b066836f3ae6 (MD5) Previous issue date: 2009-11-06 / Neste trabalho é proposto o desenvolvimento de uma rede neuronial com aprendizagem não supervisionada, para modelar a organização topográfica do córtex visual primário. Para isto, estuda-se o comportamento dos campos receptivos do córtex visual primário(V1), e, para o modelamento da rede utilizam-se os conceitos de divergência local e de interação entre neurônios vizinhos, bem como da característica de não linearidades dos neurônios. Para treinamento da rede desenvolveu-se um algoritmo de ponto fixo. / In this work it is proposed an unsupervised neural network model, which seems biologically plausible in modeling the primary visual cortex (V1). It is, also, studied de behavior of the receptive fields of V1. In order to modeling the net it was used the concepts of local discrepancy and interactions between neighbor neurons, as well the non-linearity characteristics of neurons. It was designed a fixed-point algorithm to train the neural network.

Page generated in 0.0631 seconds