• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 200
  • 69
  • 10
  • 10
  • 7
  • 7
  • 7
  • 7
  • 5
  • 4
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 372
  • 372
  • 191
  • 115
  • 101
  • 87
  • 78
  • 68
  • 62
  • 53
  • 49
  • 41
  • 39
  • 39
  • 38
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
191

The work week of the senior pastor in mid-sized churches of the EFCA

Bacon, Bradley Brehman. January 2001 (has links) (PDF)
Thesis (D. Min.)--Trinity International University, 2001. / Abstract. Includes bibliographical references (leaves 238-254).
192

The religious contribution of C.H. Mason and the Church of God in Christ toward racial unity

Wilson, John. January 2005 (has links)
Thesis (S.T.M.)--Dallas Theological Seminary, 2005. / Includes bibliographical references (leaves 83-85).
193

The work week of the senior pastor in mid-sized churches of the EFCA

Bacon, Bradley Brehman. January 2001 (has links)
Thesis (D. Min.)--Trinity International University, 2001. / Abstract. Includes bibliographical references (leaves 238-254).
194

A general catalytic β-C-H carbonylation of aliphatic amines to β-lactams

Chappell, Benjamin Graham Neil January 2018 (has links)
Carbonyl compounds are of central importance to organic chemistry and their reactions have been described as the ‘backbone of organic synthesis’. Over recent decades, palladium-catalysed C–H carbonylation reactions have emerged as a powerful means of introducing carbonyl motifs to organic molecules. This thesis describes the development of a general C–H carbonylation reaction of secondary aliphatic amines, which provides facile access to synthetically useful β-lactam products. The first part of the thesis explores the scope and limitations of this reaction. Whilst previous C(sp3)–H carbonylation methodologies were restricted to ‘Type F’ secondary aliphatic amines, the reaction described in this thesis was found to be broadly applicable all structural sub-classes of secondary aliphatic amine. Furthermore, the reaction was found to be remarkably tolerant of functional groups, even those that commonly cause issues in palladium-catalysed C–H activation reactions such as heteroaromatics and thioethers. The second part of this thesis investigates the mechanism of this C–H carbonylation reaction. Interestingly, the reaction was found not to proceed via a traditional C–H carbonylation mechanism comprising of C–H activation, 1,1-migratory carbon monoxide insertion and reductive elimination. Instead, a new mechanistic paradigm for palladium-catalysed C–H carbonylation is proposed, which invokes a putative ‘palladium anhydride’ intermediate. A series of DFT calculations and experiments were conducted in order to support this mechanistic proposal. The work described within this PhD thesis was published in Science.
195

C-H Activation for Sustainable Synthesis: Base Metal- and Electro-Catalysis

Sauermann, Nicolas 03 July 2018 (has links)
No description available.
196

Design of flow processes for C-H activation-type reactions

Zakrzewski, Jacek January 2018 (has links)
The last 15 years have seen tremendous advances in using different metal catalysts to functionalize traditionally unreactive C–H bonds. Given the high potential of these seemingly ideal strategic bond forming reactions, the uptake of C–H activation in fine chemical manufacture is slow. Part of the reason for this deficiency is limited mechanistic understanding of these complex reactions. This can preclude industrial applications of either batch or continuous C–H activation processes. Owing to the synthetic utility of C–H activation reactions, it is highly desirable to design intensified processes for this family of transformations, what can possibly facilitate industrialisation of C–H activation reactions. Firstly, an ab initio process design of a novel C(sp3)–H activation reaction giving access to aziridines yielded a predictive mechanistic model that has been used in an in silico optimisation. The identified set of conditions was suitable for a scalable continuous process. A separation technique was developed, and the utility of the process was extended by a subsequent reaction, a nucleophilic ring opening. Secondly, a black-box optimisation of the investigated reaction was performed. The applied algorithm was able to identify a set of conditions fulfilling the set targets within few experimental trails. The second project has set out to design a process for a C–H oxidative carbonylation. A kinetic study has shown that the reaction is CO-starved even at elevated pressures and that there is an optimal CO concentration. The turn-over number was increased from 8 to nearly 500. Two scalable processes were then developed. The first was a batch process, characterised by a very low catalyst loading. The second was, to the best of author’s knowledge, the first continuous process for an oxidative carbonylation reaction. The continuous process was tested on several oxidative carbonylations yielding excellent results with virtually no optimisation performed. Finally, an environmental sustainability assessment was performed using both, simplified metrics and an LCI analysis. The developed mechanistic understanding allowed identification of sources of inherent inefficiencies of C–H activation reactions. Appropriate solutions to these obstacles were suggested. Thus, it is believed that a step towards generic principles of design of intensified, scalable processes for C–H activation-type reactions has been made.
197

Síntese de Amino-N-heteroaromáticos via SNAr

Lima Filho, Edson de Oliveira 19 February 2018 (has links)
Submitted by Automação e Estatística (sst@bczm.ufrn.br) on 2018-05-02T22:35:04Z No. of bitstreams: 1 EdsonDeOliveiraLimaFilho_DISSERT.pdf: 9482859 bytes, checksum: 198e56ce0d601cf6793c3db87ce65cc4 (MD5) / Approved for entry into archive by Arlan Eloi Leite Silva (eloihistoriador@yahoo.com.br) on 2018-05-04T23:51:21Z (GMT) No. of bitstreams: 1 EdsonDeOliveiraLimaFilho_DISSERT.pdf: 9482859 bytes, checksum: 198e56ce0d601cf6793c3db87ce65cc4 (MD5) / Made available in DSpace on 2018-05-04T23:51:21Z (GMT). No. of bitstreams: 1 EdsonDeOliveiraLimaFilho_DISSERT.pdf: 9482859 bytes, checksum: 198e56ce0d601cf6793c3db87ce65cc4 (MD5) Previous issue date: 2018-02-19 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / Derivados de N-heteroaromáticos contendo grupos aminas em suas estruturas são de grande interesse no desenvolvimento de novos fármacos, devido as atividades biológicasrelatadas na literatura. O desenvolvimento de novos protocolos para a obtenção de amino-N-heteroaromáticos de forma branda e sem uso de catalisadores metálicos é bastante desejado na química orgânica sintética. Neste trabalho foi desenvolvido um método para obtenção de derivados quinoxalínicos, através de uma reação de SNAr, utilizando 2,3-dicloro-6,7-dinitroquinoxalina e anilinas substituídas. Após otimização, foram obtidos 13 exemplos de produtos inéditos em condições brandas e sem uso de catalisadores metálicos, com rendimentos variando de baixos a ótimos (traço-98%). Além do uso do derivado quinoxalínico, foi estudada a reação de funcionalização C-H com a piridina e t-butilamina. O uso de iodo molecular (I2) como aditivo nesta transformação, possibilitou a formação do produto dissubstituídoN2,N6-di-terc-butilpiridina-2,6-diamina, a partir de uma síntese direta e com formação de um composto inédito, com potencial atividade biológica. / N-heteroaromatic derivatives containing amine groups in their structures are of great interest in the development of new drugs, due to the reported biological activities that these compounds present. The development of novel protocols for obtaining amino-N-heteroaromatic compounds in a mild manner and without the use of metal catalysts is much desired in synthetic organic chemistry. In this work a method was developed to obtain quinoxalinic derivatives through a SNAr reaction using 2,3-dichloro-6,7-dinitroquinoxaline and substituted anilines. After optimization, 13 examples of unpublished products were obtained under mild conditions and without the use of metallic catalysts, with yields varying from low to excellent (trace-98%). In addition to the use of the quinoxalinic derivative, the C-H functionalization reaction with pyridine and tert-butylamine was studied. The use of molecular iodine (I2) as an additive in this transformation allowed the formation of the disubstituted product N2,N6-di-tert-butylpyridine-2,6-diamine from a direct synthesis and formation of an unpublished compound with potential biological activity.
198

C−H Alkylations and Alkynylations Using Ruthenium, Nickel and Manganese Complexes

Ruan, Zhixiong 10 October 2017 (has links)
No description available.
199

Complexes de métaux non-nobles de fer et de nickel portant des ligands redox non-innocents et leurs applications en catalyse : de l'activation C-H aux réactions de couplages croisés / Complexes of non-noble metals of iron and nickel bearing redox non-innocent ligands and their catalytic applications : from C-H activation to cross-coupling reactions

Salanouve, Elise 14 November 2014 (has links)
Ce travail de thèse s’est intéressé au développement de complexes de métaux non-nobles portant des ligands non-innocents et leurs applications en catalyse comme alternatives efficaces aux complexes de métaux nobles dans un contexte de fortes préoccupations économiques et environnementales. Ainsi, nous avons synthétisé et caractérisé des complexes de fer et de nickel portant des ligands non-innocents, à l’aide de différentes techniques spectroscopiques. Ces ligands pourraient moduler la réactivité du métal et étendre ainsi le champ d’applications de ces métaux de transition. Dans le but de développer de nouvelles méthodes de synthèse en catalyse au fer, des complexes de ce dernier avec des ligands bis(imino)pyridines ont été évalués pour une réaction tandem d’activation/arylation d’arènes non activés. Des études mécanistiques préliminaires, basées sur des données spectroscopiques (RMN, IR in situ, RPE) et théoriques (DFT), ont permis de suggérer un mécanisme différent de ceux connus pour le fer dans la littérature et n’est pas compatible avec un mécanisme de substitution aromatique radicalaire (HAS). Nous nous sommes également intéressés à un autre domaine majeur en catalyse : les réactions de couplage croisés catalysées par des complexes de nickel portant des ligands redox non-innocents. Les défis actuels de la catalyse au nickel sont la réalisation de couplage croisés d’halogénures d’alkyle non activés et les mécanismes impliqués diffèrent généralement de ceux mis en jeu dans les réactions de couplage croisé pallado-catalysées. Les réactions de couplage croisé catalysées par des complexes de nickel portant des ligands redox non-innocents ont été étudiées afin de découvrir de nouvelles réactivités et d’avoir une meilleure compréhension des cycles catalytiques mis en jeu. / This PhD work has focused on the development of complexes of non-noble metals bearing non-innocent ligands and their catalytic applications as efficient alternatives to noble metal complexes, in the light of increasing concerns regarding cost and sustainability-related issues of noble metals. Towards this goal, we have developed and characterized complexes of non-noble metals (Fe, Ni) with non-innocent ligands using multiple spectroscopic techniques. This work was aimed at broadening the field of useful catalytic applications of these particular complexes. For our dedicated program in iron catalysis, a new method for tandem C–H activation/arylation of unactivated arenes catalyzed by iron complexes bearing redox-active bis(imino)pyridine ligands was developed. Preliminary mechanistic insights were gained based on combined spectroscopic data (NMR, in situ IR, EPR), reactivity studies as well as DFT calculations. The results obtained are clearly in favor of a mechanism distinct to that previously reported for iron-based catalytic systems and are not compatible with homolytic aromatic substitution (HAS). We have also focused on another challenging field in catalysis: cross-coupling reactions catalyzed by nickel as base metal, bearing redox non-innocent ligands. Several challenges in cross-coupling reactions remain among which coupling of non-activated alkyl halides. Mechanisms involving nickel catalysts often differ from those involved in palladium catalyzed cross-coupling reactions. The behavior of nickel complexes bearing redox non-innocent ligands was studied in order to unveil new reactivites and gain a better understanding of the catalytic cycles at stake.
200

d- and f-metal alkoxy-tethered N-heterocyclic carbene complexes

Fyfe, Andrew Alston January 2016 (has links)
Chapter one is an introduction, outlining the structure and bonding of N-heterocyclic carbenes (NHCs). It then goes on to give examples of f -metal NHC complexes and describes any reactivity or catalytic activity. Chapter two describes the synthesis of the transition metal NHC complexes [Fe (LMes)2] 3 and [Co(LMes)2] 4 (LMes = OCMe2 CH2(1-C{NCH2CH2NMes})). The heterobimetallic complexes [(LMes)Fe(μ-LMes)U(μ-{N(SiMe3)Si(Me)2CH2})(N(Si Me3)2)2] 5 and [(LMes)Co(μ-LMes)U(μ-{N(SiMe3)Si(Me)2CH2})(N(SiMe3)2)2] 6 were prepared from the reaction between [({Me3Si}2N)2U(NSiMe3SiMe2CH2)] and 3 or 4, respectively. Complex 5 was also synthesised by the reaction between 3 and [U(N{SiMe3}2)2]. The diamagnetic analogue [(LMes)Zn(μ-LMes)Th(μ-{N(SiMe3)Si (Me)2CH2})(N(SiMe3)2)2] 9 was prepared from the reaction between [Zn(LMes)2] and [({SiMe3}2N)2Th(NSiMe3SiMe2CH2)]. The reactivity of 5 is discussed. When 5 was reacted with 2,6-dimethylphenyl isocyanide, [({SiMe3}2N)2U{N(SiMe3)Si(Me2)C(CH2)N(2,6−Me−C6H3)}] 8 was isolated. The reaction with CO resulted in the formation of [({Me3Si}2N)2U{N(SiMe3) Si(Me2)C(CH2)CO}]. 5 showed no reactivity with azides, boranes or m-chloroperbenzoic acid and decomposed when exposed to H2, CO2 or KC8. The reaction between 6 and 2,6-di-tert-butylphenol formed the previously reported monometallic complex [({SiMe3}2N)2U(OC6H3tBu2)]. The serendipitous synthesis of the iron ate complex [Na(Fe{LMes}2)2]+ [Fe(ArO)3]– 10 (Ar = 2,6-tBu-C6H3) is also described. Chapter three describes the synthesis of the aryloxide complexes [HC(3-tBu-5-Me- C6H2OH)(3-tBu-5-Me-C6H2O)μ-(3-tBu-5-Me-C6H2O)Co(THF)]2 11 and [HC(3- tBu-5-Me-C6H2OH)(3-tBu-5-Me-C6H2O)μ-(3-tBu-5-Me-C6H2O)Zn(THF)n] 13. Treatment of 11 with pyridine N-oxide resulted in the formation of the pyridine-Noxide adduct [HC(3-tBu-5-Me-C6H2OH)(3-tBu-5-Me-C6H2O)μ-(3-tBu-5-Me-C6H2 O)Co(C5H5NO)]2 12. When 11 was treated with [({Me3Si}2N)2U(NSiMe3SiMe2C H2)], no reaction occured at room temperature but at 80◦C decomposition occured. When 11 was treated with [(NH4)2Ce(NO3)6] the protonated proligand HC(3-tBu- 5-Me-C6H2OH)3 reformed. The reactivity of 11 with [({Me3Si}2N)Ce(LiPr)2] is also discussed. Chapter three also discusses the preparation of the heterobimetallic complex [HC(3- tBu-5-Me-C6H2O)2-μ-(3-tBu-5-Me-C6H2O)KCo]2 14 and the salt-elimination chemistry of the complex. The preparation of [HC(3-tBu-5-Me-C6H2O)2-μ-(3-tBu-5- Me-C6H2O)KZn]2 15 is also outlined. Chapter four discusses the reactivity of [Ce(LiPr)3] (Li Pr =OCMe2CH2(1-C{NCHC HNiPr})) in C-H and N-H activation and as a catalyst for organic reactions. [Ce(LiPr)3] displayed no C-H activation chemistry with RC−−−CH (R = SiMe3, Ph, tBu), diphenyl acetone, indene or fluorene. [Ce(LiPr)3] also showed no N-H activation chemistry with pyrrole or indole, nor did it react with the lignin model compound PhOCH2Ph. When treated with an excess of benzyl chloride, [Ce(LiPr)3] underwent ligand decomposition to form the acylazolium chloride [(C6H5C(O))OCMe2CH2(1-C(C6H5C (O)){NCHCHNiPr})]Cl 18 and CeCl3. When [Ce(LiPr)3] was added to a mixture of benzaldehyde and benzyl chloride, as a coupling catalyst, the complex decomposed. [Ce(LiPr)4] was tested as a catalyst from the benzoin condensation and for the coupling of benzalehyde and benzyl chloride, however, it resulted in the decomposition of [Ce(LiPr)4]. Chapter four also outlines the catalytic activity of 3. The complex showed no reactivity as a hydrogenation catalyst towards alkenes, aldehydes or ketones but did display reactivity as a hydroboration catalyst for alkenes, aldehydes or ketones. Chapter five presents the conclusions for chapters two to four. The final chapter contains the experimental details from the previous chapters.

Page generated in 0.1419 seconds