• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 3
  • 2
  • 2
  • 2
  • Tagged with
  • 14
  • 14
  • 5
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Signal processing within and between bacterial chemoreceptors

Lai, Runzhi 15 May 2009 (has links)
The key control step in E. coli chemotaxis is regulation of CheA kinase activity by a set of four transmembrane chemoreceptors. The receptor dimers can form trimeric complexes (trimers of dimers), and these trimers can be joined by a bridge thought to consist of a CheW monomer, a CheA dimer, and a second CheW monomer. It has been proposed that trimers of receptor dimers may be joined by CheW-CheA dimer-CheW links to form an extended hexagonal lattice that may be the structural basis of the chemoreceptor patches seen in E. coli. The receptor/CheA/CheW ternary complex is a membrane-spanning allosteric enzyme whose activity is regulated by protein interactions. The study presented in this dissertation investigated intermolecular and intramolecular interactions that affect the chemotactic signal processing. I have examined functional interactions between the serine receptor Tsr and the aspartate receptor Tar using a receptor coupled in vitro phosphorylation assay. The results reveal the emergent properties of mixed receptor populations and emphasize their importance in the integrated signal processing that underlies bacterial chemotaxis. A mutational analysis of the extreme C-terminus (last fifty residues) of Tar is also presented. The results implicate the receptor C-terminus in maintenance of baseline receptor activity and in attractant-induced transmembrane signaling. They also suggest how adaptive methylation might counteract the effects of attractant binding.
2

Role of N- and C- termini in inactivation of sodium channel in weakly electric fish

Wu, Mingming 22 October 2009 (has links)
The weakly electric fish Sternopygus macrurus emits an electric organ discharge (EOD) composed of a series of pulses. The EOD pulse is mainly shaped by sodium currents. There are two sodium channel α subunits orthologs of the mammalian Nav1.4 expressed in the EO of Sternopygus. Previous studies identified a novel splice variant of the Nav1.4b (Nav1.4bL), in which an extra 51-amino acid occurs in the N terminal end. Nav1.4bL currents inactivate and recover from inactivation significantly faster than Nav1.4bS. The voltage-dependence of steady-state inactivation of smNav1.4bL shifts to hyperpolarized potential. Structural analysis predicts an α-helix in the middle of the extended N terminus. Removal of a proline right after the α-helix significantly slows down current decay but has no effect on channel recovery from inactivation, suggesting inactivation and recovery have independent mechanism. Mutagenesis analysis of the extended N terminus showed that the short helical region, especially the positive charges in the helix, is an important determinant for channel voltage-dependence of steady-state inactivation. However, other residues outside the helical region are required for regulation of fast inactivation and recovery form inactivation. Functional and structural analysis provides evidence for the importance of the C terminus in fish Nav1.4b channel properties. Chimera in which the C terminus of smNav1.4bS was substituted by the human Nav1.4 C terminus, shows an 11 mV positive shift in voltage-dependence of activation and a -16 mV negative shift in inactivation. Deletion of the distal half of smNav1.4bS negatively shifted voltage-dependence of inactivation and significantly accelerated channel recovery from inactivation. In the deletion mutant, the regulation by the N segment is missing. Substitution of the C terminus mutant retains wild type channel inactivation and recovery properties and can be regulated by N segment again. My study provides evidence that the extended N terminus of smNav1.4bL binds the distal part of C terminal tail to modulate channel inactivation properties. This is the first time to show the distal C terminus is involved in channel recovery from inactivation. Studies in the fish sodium channel properties provide useful information to understand function and structure of voltage-gated sodium channels. / text
3

Inhibition cellulaire de la proprotéine convertase 1 et activité des proprotéines convertases dans le réticulum endoplasmique

Salvas, Alexandre January 2004 (has links)
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
4

Helical Packing Regulates Structural Transitions In Bax

Tschammer, Nuska 01 January 2007 (has links)
Apoptosis is essential for development and the maintenance of cellular homeostasis and is frequently dysregulated in disease states. Proteins of the BCL-2 family are key modulators of this process and are thus ideal therapeutic targets. In response to diverse apoptotic stimuli, the pro-apoptotic member of BCL-2 family, BAX, redistributes from the cytosol to the mitochondria or endoplasmic reticulum and primes cells for death. The structural changes that enable this lethal protein to transition from a cytosolic form to a membrane-bound form remain poorly understood. Elucidating this process is a necessary step in the development of BAX as a novel therapeutic target for the treatment of cancer, as well as autoimmune and neurodegenerative disorders. A three-part study, utilizing computational modeling and biological assays, was used to examine how BAX, and similar proteins, transition to membranes. The first part tested the hypothesis that the C-terminal α9 helix regulates the distribution and activity of BAX by functioning as a "molecular switch" to trigger conformational changes that enable the protein to redistribute from the cytosol to mitochondrial membrane. Computational analysis, tested in biological assays, revealed a new finding: that the α9 helix can dock into a hydrophobic groove of BAX in two opposite directions – in a self-associated, forward orientation and a previously, unknown reverse orientation that enables dimerization and apoptosis. Peptides, made to mimic the α9-helix, were able to induce the mitochondrial translocation of BAX, but not when key residues in the hydrophobic groove were mutated. Such findings indicate that the α9 helix of BAX can function as a "molecular switch" to mediate occupancy of the hydrophobic groove and regulate the membrane-binding activity of BAX. This new discovery contributes to the understanding of how BAX functions during apoptosis and can lead to the design of new therapeutic approaches based on manipulating the occupancy of the hydrophobic groove. The second and third parts of the study used computational modeling to examine how the helical stability of proteins relates to their ability to functionally transition. Analysis of BAX, as a prototypical transitioning protein, revealed that it has a broad variation in the distribution of its helical interaction energy. This observation led to the hypothesis tested, that proteins which undergo 3D structural transitions during execution of their function have broad variations in the distribution of their helical interaction energies. The result of this study, after examination of a large group of all-alpha proteins, was the development of a novel, predictive computational method, based on measuring helical interactions energies, which can be used to identify new proteins that undergo structural transitioning in the execution of their function. When this method was used to examine transitioning in other members the BCL-2 family, a strong agreement with the published experimental findings resulted. Further, it was revealed that the binding of a ligand, such as a small peptide, to a protein can have significant stabilizing or destabilizing influences that impact upon the activation and function of the protein. This computational analysis thus contributes to a better understanding of the function and regulation of the BCL-2 family members and also offers the means by which peptide mimics that modulate protein activity can be designed for testing in therapeutic endeavors.
5

REGULATION OF L-TYPE VOLTAGE-DEPENDNET CALCIUM CHANNELS BY THE REM GTPASE

Pang, Chunyan 01 January 2008 (has links)
The Rem, Rem2, Rad, and Gem/Kir GTPases, comprise a novel subfamily of the small Ras-related GTP-binding proteins known as the RGK GTPases, and have been shown to function as potent negative regulators of high voltage-activated (HVA) Ca2+ channels upon overexpression. HVA Ca2+ channels modulate Ca2+ influx in response to membrane depolarization to regulate a wide variety of cellular functions and they minimally consist of a pore-forming α1 subunit, an intracellular β subunit, and a transmembrane complex α2/δ subunit. While the mechanisms underlying RGK-mediated Ca2+ channel regulation remain poorly defined, it appears that both membrane localization and the binding of accessory Ca2+ channel β subunits (CaVβ) are required for suppression of Ca2+ channel currents. We identified a direct interaction between Rem and the L-type Cavα1 C-terminus (CCT), but not the CCT from CaV3.2 T-type channels. Deletion mapping studies suggest that the conserved CB-IQ domain is required for Rem:CCT association, a region known to contribute to both Ca2+-dependent channel inactivation and facilitation through interactions of Ca2+-bound calmodulin (CaM) with the proximal CCT. Furthermore, both Rem2 and Rad GTPases display similar patterns of CCT binding, suggesting that CCT represents a common binding partner for all RGK proteins. While previous studies have found that association of the Rem C-terminus with the plasma membrane is required for channel inhibition, it is not required for CaVβ- subunit binding. However, Rem:CCT association is well correlated with the plasma membrane localization of Rem and more importantly, Rem-mediated channel inhibition upon overexpression. Moreover, co-expression of the proximal CB-IQ containing region of CCT (residues 1507-1669) in HIT-T15 cells partially relieves Rem blockade of ionic current. Interestingly, Ca2+/CaM disrupts Rem:CCT association in vitro. Moreover, CaM overexpression partially relieves Rem-mediated L-type Ca2+ channel inhibition and Rem overexpression alters the kinetics of calcium-dependent inactivation. Together, these data suggest that the association of Rem with the CCT represents a crucial molecular determinant for Rem-mediated L-type Ca2+ channel regulation and provides new insights into this novel channel regulatory process. These studies also suggest that instead of acting as complete Ca2+ channel blockers, RGK proteins may function as endogenous regulators for the channel inactivation machinery.
6

Redesign of Alpha Class Glutathione Transferases to Study Their Catalytic Properties

Nilsson, Lisa O January 2001 (has links)
<p>A number of active site mutants of human Alpha class glutathione transferase A1-1 (hGST A1-1) were made and characterized to determine the structural determinants for alkenal activity. The choice of mutations was based on primary structure alignments of hGST A1-1 and the Alpha class enzyme with the highest alkenal activity, hGST A4-4, from three different species and crystal structure comparisons between the human enzymes. The result was an enzyme with a 3000-fold change in substrate specificity for nonenal over 1-chloro-2,4-dinitrobenzene (CDNB).</p><p>The C-terminus of the Alpha class enzymes is an α-helix that folds over the active site upon substrate binding. The rate-determining step is product release, which is influenced by the movements of the C-terminus, thereby opening the active site. Phenylalanine 220, near the end of the C-terminus, forms an aromatic cluster with tyrosine 9 and phenylalanine 10, positioning the β-carbon of the cysteinyl moiety of glutathione. The effects of phenylalanine 220 mutations on the mobility of the C-terminus were studied by the viscosity dependence of k<sub>cat</sub> and k<sub>cat</sub>/K<sub>m</sub> with glutathione and CDNB as the varied substrates. </p><p>The compatibility of slightly different subunit interfaces within the Alpha class has been studied by heterodimerization between monomers from hGST A1-1 and hGST A4-4. The heterodimer was temperature sensitive, and rehybridized into homodimers at 40 ˚C. The heterodimers did not show strictly additive activities with alkenals and CDNB. This result combined with further studies indicates that there are factors at the subunit interface influencing the catalytic properties of hGST A1-1.</p>
7

Redesign of Alpha Class Glutathione Transferases to Study Their Catalytic Properties

Nilsson, Lisa O January 2001 (has links)
A number of active site mutants of human Alpha class glutathione transferase A1-1 (hGST A1-1) were made and characterized to determine the structural determinants for alkenal activity. The choice of mutations was based on primary structure alignments of hGST A1-1 and the Alpha class enzyme with the highest alkenal activity, hGST A4-4, from three different species and crystal structure comparisons between the human enzymes. The result was an enzyme with a 3000-fold change in substrate specificity for nonenal over 1-chloro-2,4-dinitrobenzene (CDNB). The C-terminus of the Alpha class enzymes is an α-helix that folds over the active site upon substrate binding. The rate-determining step is product release, which is influenced by the movements of the C-terminus, thereby opening the active site. Phenylalanine 220, near the end of the C-terminus, forms an aromatic cluster with tyrosine 9 and phenylalanine 10, positioning the β-carbon of the cysteinyl moiety of glutathione. The effects of phenylalanine 220 mutations on the mobility of the C-terminus were studied by the viscosity dependence of kcat and kcat/Km with glutathione and CDNB as the varied substrates. The compatibility of slightly different subunit interfaces within the Alpha class has been studied by heterodimerization between monomers from hGST A1-1 and hGST A4-4. The heterodimer was temperature sensitive, and rehybridized into homodimers at 40 ˚C. The heterodimers did not show strictly additive activities with alkenals and CDNB. This result combined with further studies indicates that there are factors at the subunit interface influencing the catalytic properties of hGST A1-1.
8

The de novo Prediction of Functionally Significant Sequence Motifs in Arabidopsis thaliana.

Austin, Ryan 18 February 2010 (has links)
This thesis performs de novo predictions for functionally significant sequence motifs in the Arabidopsis genome under two separate contexts. Each study applies the use of genomic positional information, statistical over-representation and several biologically contextual filters to maximize the visibility of biological signal in prediction results. Numerous literature supported motifs are prevalent in the results of both studies and a number of novel motif patterns possess a strong potential for in planta significance. The first study examines the statistical over-representation of C-terminal tripeptides as a means for identifying eukaryotic conserved protein targetting signatures. Comparative genomics is applied to the analysis of tripeptide frequencies in the C-terminus of 7 eukaryotic proteomes. While biological signal is maximized through the filtering of both simple sequences and homologous sequences present across protein families. The second study introduces a methodology for the effective prediction of transcription factor binding sites in Arabidopsis. A collection of motif prediction algorithms and a novel enumerative strategy are applied to the prediction of cis-acting regulatory elements within the promoters of genes found coexpressed within distinct tissues and under specific abiotic stress treatments. Overall, the analysis identifies 4 known motifs in expected contexts, 5 known motifs in novel contexts and 7 novel motifs with a high potential for biological function.
9

The de novo Prediction of Functionally Significant Sequence Motifs in Arabidopsis thaliana.

Austin, Ryan 18 February 2010 (has links)
This thesis performs de novo predictions for functionally significant sequence motifs in the Arabidopsis genome under two separate contexts. Each study applies the use of genomic positional information, statistical over-representation and several biologically contextual filters to maximize the visibility of biological signal in prediction results. Numerous literature supported motifs are prevalent in the results of both studies and a number of novel motif patterns possess a strong potential for in planta significance. The first study examines the statistical over-representation of C-terminal tripeptides as a means for identifying eukaryotic conserved protein targetting signatures. Comparative genomics is applied to the analysis of tripeptide frequencies in the C-terminus of 7 eukaryotic proteomes. While biological signal is maximized through the filtering of both simple sequences and homologous sequences present across protein families. The second study introduces a methodology for the effective prediction of transcription factor binding sites in Arabidopsis. A collection of motif prediction algorithms and a novel enumerative strategy are applied to the prediction of cis-acting regulatory elements within the promoters of genes found coexpressed within distinct tissues and under specific abiotic stress treatments. Overall, the analysis identifies 4 known motifs in expected contexts, 5 known motifs in novel contexts and 7 novel motifs with a high potential for biological function.
10

Caractérisation moléculaire du rôle de facteurs accessoires ArgR et PepA au niveau de la recombinaison spécifique sur le site cer

Delesques, Jérémy R. 07 1900 (has links)
Mon projet de recherche avait pour but de caractériser le rôle de deux protéines, ArgR et PepA, qui agissent en tant que facteurs accessoires de la recombinaison au niveau de deux sites cer du plasmide ColE1 présent dans la bactérie Escherichia coli. Ces deux protéines, couplées aux deux recombinases à tyrosine XerC et XerD, permettent la catalyse de la recombinaison site spécifique au niveau de la séquence cer, convertissant les multimères instables de ColE1 en monomères stables. Cette étude a principalement porté sur la région C-terminale de la protéine ArgR. Cette région de la protéine ArgR possède une séquence en acides-aminés et une structure similaire à celle de la protéine AhrC de Bacillus subtilis. De plus, AhrC, le répresseur de l’arginine de cette bactérie, est capable de complémenter des Escherichia coli mutantes déficientes en ArgR. Les régions C-terminales de ces protéines, montrent une forte similarité. De précédents travaux dans notre laboratoire ont démontré que des mutants d’ArgR comprenant des mutations dans cette région, en particulier les mutants ArgR149, une version tronquée d’ArgR de 149 acides-aminés, et ArgR5aa, une version comprenant une insertion de cinq acides-aminés dans la partie C-terminale, perdaient la capacité de permettre la recombinaison au niveau de deux sites cer présents dans le plasmide pCS210. Malgré cette incapacité à promouvoir la réaction de recombinaison en cer, ces deux mutants étaient toujours capables de se lier spécifiquement à l’ADN et de réprimer une fusion argA :: lacZ. Dans ce travail, les versions mutantes et sauvages d’ArgR furent surexprimées en tant que protéines de fusion 6-histidine. Des analyses crosslinking ont montré que la version sauvage et ArgR5aa pouvaient former des hexamères in-vitro de manière efficace, alors qu’ArgR149 formait des multimères de plus faible poids moléculaire. Des formes tronquées d’ArgR qui comportaient 150 acides-aminés ou plus, étaient encore capables de permettre la recombinaison en cer. Les mutants par substitution ArgRL149A et ArgRL151A ont tous montré que les substitutions d’un seul acide-aminé au sein de cette région avaient peu d’effets sur la recombinaison en cer. Les expériences de crosslinking protéine-à-protéine ont montré que le type sauvage et les formes mutantes d’ArgR étaient capables d’interagir avec la protéine accessoire PepA, également impliquée dans la recombinaison en cer. Les expériences de recombinaison in-vitro utilisant la forme sauvage et les formes mutantes d’ArgR combinées avec les protéines PepA, XerC et XerD purifiées, ont montré que le mutant ArgR149 ne soutenait pas la recombinaison, mais que le mutant ArgR5aa permettait la formation d’une jonction d’Holliday. Des expériences de topologie ont montré que PepA était capable de protéger l’ADN de la topoisomérase 1, et d’empêcher ArgRWt de se lier à l’ADN. Les deux mutants ArgR149 et ArgR5aa protègent aussi l’ADN avec plus de surenroulements. Quand on ajoute PepA, les profils de migration montrent un problème de liaison des deux mutants avec PepA. D’autres expériences impliquant le triplet LEL (leucine-acide glutamique-leucine) et les acides-aminés alentour devraient être réalisés dans le but de connaitre l’existence d’un site de liaison potentiel pour PepA. / My research project involved the role of two proteins, ArgR and PepA, which act as accessory factors in the ColE1 cer recombination system from the gram negative bacteria Escherichia coli. These two proteins, in addition to the tyrosine recombinases XerC and XerD, catalyze a site-specific recombination event at the cer sequence which converts unstable multimeric forms of ColE1 into more stable monomers. Our study mainly focused on the C-terminal end of the ArgR. This region of the ArgR protein possesses a structural and amino acid sequence similarity with the AhrC protein from Bacillus subtilis. Moreover, AhrC, the Arginine repressor of this bacterium, is able to complement Escherichia coli mutants deficient in ArgR. The C-terminal regions of these proteins, display a very high region of similarity. Previous work from our laboratory has shown that ArgR mutants with mutations in this region, especially the mutants ArgR149, a truncated 149 amino acids form of ArgR, and ArgR5aa, a form containing a five amino acid insertion in the C-terminal part, lost the ability to perform a recombination reaction at two cer sites in the plasmid pCS210. Despite this defect in promoting cer recombination, the mutants were still able to bind specifically to DNA, and to repress an argA :: lacZ genetic fusion. In this work, both wild type and mutant ArgR proteins were overexpressed as 6-histidine fusion proteins. Crosslinking analysis showed that both wild type and ArgR5aa efficiently formed hexamers in vitro, while ArgR149 formed lower molecular weight multimers. Truncated forms of ArgR that were 150 amino acids or longer, were able to support cer recombination. The substitution mutants between positions 149 to 151 all showed that single amino acid substitutions at this region had little effect on cer recombination. Protein-protein crosslinking experiments showed that wild type and mutant forms of ArgR, were able to interact with and the other accessory protein involved in cer recombination, PepA. In vitro recombination experiments using wild type and mutant forms of ArgR, combined with purified PepA, XerC and XerD showed that the ArgR149 mutant did not support recombination, but the ArgR5aa mutant did promote Holliday junction formation, raising the possibility that these two mutants interact differently with the Xer recombination machinery. Topology experiments showed that after adding topoisomerase 1, PepA is able to protect DNA from topoisomerase 1, and prevent ArgRWt binding to DNA. The two mutants ArgR149 and ArgR5aa are protecting DNA with more supercoiling. When PepA is added, migration profiles with the two mutants showed a binding problem with PepA. Other experiments involving the LEL triplet (leucine-glutamic acid-leucine) and amino-acids around it should be done in order to know the existence of a possible binding site for PepA.

Page generated in 0.049 seconds