• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 14
  • 7
  • 6
  • 6
  • 4
  • 4
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 53
  • 34
  • 11
  • 11
  • 8
  • 8
  • 8
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Nanoscopy inside living brain slices

Urban, Nicolai Thomas 01 November 2012 (has links)
No description available.
52

Molecular mechanisms of presynaptic plasticity and function in the mammalian brain

Weyrer, Christopher January 2018 (has links)
Synaptic plasticity describes efficacy changes in synaptic transmission and ranges in duration from tens to hundreds of milliseconds (short-term), to hours and days (long-term). Short-term plasticity plays crucial roles in synaptic computation, information processing, learning, working and short-term memory as well as its dysfunction in psychiatric and neurodegenerative diseases. The main aim of my PhD thesis was to determine the molecular mechanisms of different forms of presynaptic plasticity. Short-term facilitation increases neurotransmitter release in response to a high-frequency pair (paired-pulse facilitation; PPF) or train (train facilitation; TF) of presynaptic stimuli. Synaptotagmin 7 (Syt7) has been shown to act as residual calcium (Ca$_{res}$) sensor for PPF and TF at various synapses. Syt7 also seems to be involved in recovery from depression, whereas its role in neurotransmission remains controversial. My aim was to express Syt7 in a synapse where it is not normally found and determine how it affects short-term synaptic plasticity. Immunohistochemistry indicated that Syt7 is not localized to cerebellar climbing fibers (CFs). Wild-type (WT) and Syt7 knockout (KO) recordings at CF to Purkinje cell (CF-PC) synapses established that at near-physiological external calcium (Ca$_{ext}$) levels both genotypes displayed similar recovery from paired-pulse depression. In low Ca$_{ext}$,WT CF-PC synapses showed robust PPF, which turned out to be independent of Syt7. All my experiments strongly suggested that WT CFs do not express native Syt7, but display low Ca$_{ext}$ CF-PC PPF and TF. Thus, channelrhodopsin-2 and Syt7 were bicistronically expressed via AAV9 virus in CFs. This ectopic Syt7 expression in CFs led to big increases in low-Ca$_{ext}$ CF-PC facilitation, more than doubling PPF and more than tripling TF. While overexpression of Syt7 might turn out to have an effect on the initial release probability (pr), the observed CF-PC facilitation increase still critically depended on presynaptic Syt7 expression. And when comparing only cells in a defined EPSC1 amplitude range, the Syt7-induced increase in low-Ca$_{ext}$ PPF could not be accounted for by changes in initial pr, suggesting a general role for Syt7 as calcium sensor for facilitation. Another form of short-term plasticity, post-tetanic potentiation (PTP), is believed to be mediated presynaptically by calcium-dependent protein kinase C (PKC) isoforms that phosphorylate Munc18-1 proteins. It is unknown how generally applicable this mechanism is throughout the brain and if other proteins might be able to modulate PTP. Combining genetic (PKCαβy triple knockout [TKO] and Munc18-1SA knock-in [Munc18 KI] mice, in which Munc18- 1 cannot get phosphorylated) with pharmacological tools (PKC inhibitor GF109203), helped us show that PTP at the cerebellar parallel fiber to Purkinje cell (PF-PC) synapse seems to depend on PKCs but seems mostly independent of Munc18-1 phosphorylation. In addition, compared to WT animals, genetic elimination of presynaptic active zone protein Liprin-α3 led to similar PF-PC PTP and paired-pulse ratios (PPRs). At the hippocampal CA3-CA1 synapse previous pharmacological studies suggested that PKC mediates PTP. A genetic approach helped to show that calcium dependent PKCs do not seem to be required for CA3-CA1 PTP. Pharmacologically inhibiting protein kinase A as well as genetically eliminating Syt7 also had no effect on CA3-CA1 PTP. In addition, Ca IM-AA mutant mice, in which Ca$_{v}$2.1 channels have a mutated IQ-like motif (IM) so that it cannot get bound by calcium sensor proteins any more, not only displayed regular PTP, but also normal PPF and TF at CA3-CA1 synapses. In conclusion, my PhD thesis helped further characterize different forms of presynaptic plasticity, underlined that short-term synaptic plasticity can be achieved through diverse mechanisms across the Mammalian brain and supported a potentially general role for synaptotagmin 7 acting as residual calcium sensor for facilitation.
53

Thermoelectrics and Oxygen Sensing Studies of Selected Perovskite Oxides

Behera, Sukanti January 2016 (has links)
Perovskite oxides show wide range of applications in the area of magnetism, ferroelectricity, piezoelectricity, thermoelectricity, gas sensing, catalyst development, solid oxide fuel cell, etc. This is due to flexibility in the structure and compositions that can be tuned by specific element doping. In the perovskite oxide (ABO3), large cation (A) is 12 -coordinated and smaller B-cation is 6 coordinated with oxide ions. Oxide materials are considered as better candidates for thermoelectric applications (interconversion of thermal into electrical energy) due to its non-toxicity and thermal stability at elevated temperature. These are insulating in nature and the conductivity can be increased by doping A and / or B –sites. Perovskite oxides are also used for oxygen monitoring in different applications including control and optimization of combustion of fossil fuels in industries and automobiles, biological and defines places, etc. In the present study, we focused on thermoelectric properties in single perovskite oxides of lanthanum cobaltite and calcium manganite and a double perovskite oxide of dysprosium barium cobaltite. Also, the oxygen sensing behaviour of dysprosium barium cobaltite at elevated temperatures is studied. The thesis contains seven chapters and a summary of respective chapters are given below. The first chapter outlines the basics of thermoelectric and gas sensing applications of both perovskite and double perovskite oxides. In the initial part, thermoelectric phenomena are explained. Thermoelectric effect is the conversion of thermal energy to electrical energy and vice-versa. Higher thermoelectric efficiency (η) can be achieved by maintaining a large temperature difference across the material. The efficiency depends on the thermoelectric figure of merit (zT) of material, which depends on thermopower (S), electrical resistivity (ρ) and thermal conductivity (κ) of the material and hence needs to be optimized. The latter part discusses the oxygen sensing property of distorted double perovskite 112 structure type as it shows advantages over other materials due to oxygen nonstoichiometric. Further, an overview of the relevant literature, objective and scope of the thesis are mentioned. The second chapter elucidates the materials and methods used for the present work. The materials viz. LaCoO3, CaMnO3-δ and DyBaCo2O5+δ, were selected for thermoelectric and oxygen sensing studies. Both the conventional solid state and soft chemistry methods were adopted for the synthesis of these materials. Powders were densified into pellets by hot uniaxial pressing / cold isostatic pressing and various heat treatments were carried out. Samples thus prepared were phase pure as confirmed using powder x-ray diffraction and Rietveld refinement performed for structural analysis. Morphological studies were carried out using scanning electron microscopy and transmission electron microscopy. Further Raman and x-ray photoelectron spectroscopic characterization of these materials were discussed. The transport properties viz. electrical resistivity, thermopower and thermal conductivity of compact pellets were measured at elevated temperatures. Further, the home-built apparatus for room temperature See beck measurements and chemo resistive oxygen sensing were explained in detail as a part of this work. The third chapter describes the effect of monovalent ion doping (Na+ and K+) at A-site of lanthanum cobaltite on thermoelectric properties. Lanthanum cobaltite system exhibit exotic behaviour due to commensuration phenomena of spin, lattice, charge and metal insulator transition. The synthesis, followed by structural refinements by Rietveld method using Fullprof suit program are explained. The results of the transport properties indicate that there is no appreciable change in the See beck Coefficient of K-doped samples throughout the studied temperature range. The Na-doped samples exhibit a decrease in the Seebeck value with increasing Na content at room temperature. At higher temperatures Seebeck value matches with that of the parent sample. This may be due to a change in the ratio of the concentration of Co4+/Co3+ ions which increases the configurational entropy of the system. In conclusion, the highest figure of merit (0.01) found for the Na / K- doped lanthanum cobaltite is for 15 atomic wt. % of doping amongst the studied samples. The fourth chapter explains about Tb/Nb co-doped calcium manganite for thermoelectric applications. The CaMnO3-δ shows enhanced thermoelectric properties, exhibits n-type behavior and the absolute thermopower is found to be 129 µV/K. Here, we investigated the Terbium and Niobium codoped at Ca and Mn-sites respectively. The presence of oxygen non-stoichiometry was confirmed using Raman spectroscopy (Mn3+ peak at 614 cm-1) and δ value was evaluated by iodometric titration. The thermoelectric properties of cold isostatic pressed (CIP) pellets prepared by the solid state and soft chemistry routes are compared. The non-monotonous behavior of absolute thermopower may be due to the increase of Mn3+ in the Mn4+ matrix and also the presence of oxygen defects in compounds. The thermoelectric figure of merit of solid state sample CaMnO3-δ estimated of 0.036 at 825K. The fifth chapter describes the thermoelectric properties of double Perovskite AA’B2O6 (112 type): (RE)BaCo2O5+δ. It is a disordered double perovskite with non-stoichiometry in oxygen and exhibits mixed valences of Cobalt. Resistivity of DyBaCo2O5+δ was found to be 0.09 Ω cm and Seebeck coefficient is found to be 42 µV/K. In order to improve the thermopower value, the Fe is substituted at Co-site. This varies the valences of Cobalt that in turn leads to a higher thermopower. Also, the morphology of thermally etched CIP pellets recorded and correlated with the transport properties. It shows the highest thermoelectric figure of merit of 0.25 at 773 K for 20 at wt % of Fe substituted sample. The sixth chapter explains about oxygen sensing studies of DyBaCo2O5+δ (112 type). The detailed structural and morphological characterization studies were carried out. Thermogravimetric analysis at isothermal temperature 873 K shows fast intake/release of oxygen of this disordered double perovskite structure. The higher chemo resistive oxygen sensitivity at the elevated temperature was measured. Further, the systematic study on the effect of oxygen sensing on the substitution of Fe and Cu at Co-site in DyBaCo2-xM xO5+δ was investigated. The possible bulk diffusion mechanism at higher temperature due to movement of oxygen defects were explained. The highest sensitivity was obtained for x = 0.4 at % of Fe and 0.2 at % of Cu at 973 K and 823 K respectively. The key findings and future aspects are summarized in the chapter-7.

Page generated in 0.0303 seconds