• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 379
  • 158
  • 49
  • 35
  • 32
  • 32
  • 32
  • 32
  • 25
  • 22
  • 16
  • 10
  • 9
  • 8
  • 7
  • Tagged with
  • 777
  • 777
  • 54
  • 53
  • 53
  • 49
  • 46
  • 46
  • 44
  • 43
  • 41
  • 39
  • 37
  • 37
  • 36
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
591

PKC Signaling Regulates Drug Resistance of Candida albicans and Saccharomyces cerevisiae via Divergent Circuitry Composed of the MAPK Cascade, Calcineurin and Hsp90

LaFayette, Shantelle 07 January 2011 (has links)
Treating fungal infections is challenging due to the emergence of drug resistance and the limited number of clinically useful antifungal drugs. To improve clinical outcome it will be necessary to develop new antifungal drugs with different mechanisms of action and to discover drugs that improve the fungicidal activity of current antifungals. This study reveals a new role for fungal protein kinase C (PKC) signaling in resistance to drugs targeting the ergosterol biosynthesis pathway in the pathogenic fungus, Candida albicans, and the model yeast, Saccharomyces cerevisiae. PKC signaling enabled survival of antifungal-induced cell membrane stress in part through the mitogen-activated protein kinase (MAPK) cascade and through cross-talk with calcineurin signaling in both species. The molecular chaperone Hsp90, which stabilizes client proteins including calcineurin, also stabilized the terminal C. albicans MAPK, Mkc1. This establishes new circuitry connecting PKC with Hsp90 and calcineurin, and suggests that inhibiting fungal Pkc1 can be a promising strategy for treating life-threatening fungal infections.
592

PKC Signaling Regulates Drug Resistance of Candida albicans and Saccharomyces cerevisiae via Divergent Circuitry Composed of the MAPK Cascade, Calcineurin and Hsp90

LaFayette, Shantelle 07 January 2011 (has links)
Treating fungal infections is challenging due to the emergence of drug resistance and the limited number of clinically useful antifungal drugs. To improve clinical outcome it will be necessary to develop new antifungal drugs with different mechanisms of action and to discover drugs that improve the fungicidal activity of current antifungals. This study reveals a new role for fungal protein kinase C (PKC) signaling in resistance to drugs targeting the ergosterol biosynthesis pathway in the pathogenic fungus, Candida albicans, and the model yeast, Saccharomyces cerevisiae. PKC signaling enabled survival of antifungal-induced cell membrane stress in part through the mitogen-activated protein kinase (MAPK) cascade and through cross-talk with calcineurin signaling in both species. The molecular chaperone Hsp90, which stabilizes client proteins including calcineurin, also stabilized the terminal C. albicans MAPK, Mkc1. This establishes new circuitry connecting PKC with Hsp90 and calcineurin, and suggests that inhibiting fungal Pkc1 can be a promising strategy for treating life-threatening fungal infections.
593

Proteomic Analysis of the Response of Pseudomonas Aeruginosa PAO1 to the Cell to Cell Signaling Molecule Trans, Trans-farnesol of Candida Albicans

Jones-Dozier, Shelby L. 26 September 2008 (has links)
Nosocomial infections associated with implanted medical- devices are on the rise due to a growing immunocompromised patient population. The organisms of interest in this study are Pseudomonas aeruginosa and Candida albicans. These organisms are opportunistic pathogens and are frequently implicated as the cause of infection and colonization of medical devices. P. aeruginosa is a motile gram-negative bacterium that is able to suppress the growth of C. albicans. Quourm sensing mimicry and biofilm formation on the hyphal surface of C. albicans by P. aeruginosa aids in suppression. C. albicans is a dimorphic fungus capable of quorum sensing with E,E-farnesol and is a central focus in this work. The goal of this project is to determine changes in protein expression when P. aeruginosa is exposed to E,E,-farnesol using 2D DIGE®. Changes in the cytosolic proteome of P. aeruginosa expose metabolic shifts that result in suppression of C. albicans. This work summarizes the effect of growth phase and concentration of E,E-farnesol on P. aeruginosa PAO1 and GSU3. Preliminary results reveal a general response of P. aeruginosa to C. albicans as changes in relevant metabolic nodes that affect pyocyanin production and the induction of virulence factors that lead to the killing of C. albicans. The overall goal of this study was to generate a profile of protein expression where a variety of conditions to further characterize the response could be easily assayed.
594

Development Of A New Immobilization Procedure For Detection Of Staphylococcal Enterotoxin B (seb) And Candida Albicans

Erturkan, Deniz 01 July 2012 (has links) (PDF)
Fast and accurate detection of pathogens such as bacteria, their toxins and viruses at low concentrations is very important. The conventional techniques are time consuming where expensive equipment is required with a consumption of excess amount of blood from patients. Recently, immunosensors are used for the detection of pathogens because they are miniature, sensitive, biocompatible and require low power. According to the Centers for Disease Control and Prevention (CDCP), 76 million people become ill due to food poisoning and 5,000 of them die each year in United States. In addition, SEB causing food poisoning has listed as a bioterrorism agent by CDCP. Thus, accurate and selective detection in short time is very important for SEB detection. Candida albicans (C. albicans) is a yeast-like fungus and causes anxiety, insomnia, constipation, hiatal hernia, panic attacks, denture-induced stomatitis, angular cheilitis, gingivitis and prosthetic implant infections. In addition, it can cause death if the immune system of patient is under failure due to cancer, chemotherapy and AIDS. In this study, a new procedure was developed. A simple and highly selective homogeneous sandwich immunoassay was obtained for ultrasensitive detection of Staphylococcal Enterotoxin B (SEB) using Atomic Force Microscopy (AFM) and Surface Enhanced Raman Scattering (SERS) probe. In the developed procedure, thiolated antibodies were produced and SEB was immobilized on the biosensor surface using these antibodies. In addition, theory of SEB adsorption on a gold surface was studied and the reaction rate constant between SEB and its toxin was calculated. Moreover, C. albicans was detected using the developed procedure by a microscope. Thus, it is proved that, the developed procedure can be used for detection of different pathogens. Furthermore, nonspecific interaction between SEB antibody and BSA was determined in this study. Also, the developed procedure and a procedure found from literature were compared. In the procedure used in the literature (second procedure), self-assembled monolayer (SAM) was formed and antibodies were immobilized on SAM. After formation of sandwich structure, the roughness of gold surface and the minimum concentration of SEB detected were determined by AFM and SERS, respectively.
595

Determinación de la actividad antifúngica contra Candida albicans y Aspergillus niger de 10 plantas medicinales de 3 departamentos del Perú

Huamaní Achata, María Elena, Ruiz Quiroz, Julio Reynaldo January 2005 (has links)
El presente trabajo investigo la actividad antifúngica in vitro de doce extractos etanolicos correspondientes a diez plantas medicinales peruanas; Annona cherimolia Mill. (hojas), Annona muricata L. (corteza y hojas), Bidens pilosa L. (partes aéreas), Hypericum laricifolium L. (partes aéreas), Juglans neotropica Diels (corteza), Piper spp. (hojas), Plantago major L. (hojas), Psidium guajava L. (hojas), Schinus molle L. (corteza y hojas) y Spartium junceum L. (planta entera). Las especies fueron recolectadas en el departamento de Amazonas, excepto Schinus molle L. (Apurímac) y Annona muricata L. (Lima). La actividad antifúngica se evaluo mediante los métodos de difusión en agar y dilución en agar para la determinación de la concentración mínima inhibitoria (CMI). Los microorganismos de prueba utilizados fueron las levaduras Candida albicans ATCC 10231 y Candida albicans cepa clínica, así como, el hongo filamentoso Aspergillus niger ATCC 16404; las cepas fueron proporcionadas por la Cátedra de Microbiología de la Facultad de Farmacia y Bioquímica de la Universidad Nacional Mayor de San Marcos. De doce extractos investigados, seis presentaron actividad antifúngica consistente con un diámetro de halos de inhibición ≥18mm (Prueba de Difusión en agar) frente a Candida albicans ATCC 10231. Ningún extracto mostró actividad consistente frente a la cepa clínica de Candida albicans y Aspergillus niger ATCC 16404. La CMI de los extractos que presentaron actividad consistente frente a Candida albicans ATCC 10231, fue de 250 µg/mL para Hypericum laricifolium L., Juglans neotropica Diels, Psidium guajava L. y Schinus molle L. (un extracto de corteza y uno de hojas) y de 500µg/mL para Piper spp. No se determino la CMI de los extractos (Juglans neotropica Diels y Psidium guajava L.) que presentaron halos frente al Aspergillus niger ATCC 16404 por considerarlos sin actividad significante (<18mm.). Los antifúngicos Nistatina y Fluconazol fueron incluidos en el estudio como controles positivos. Palabras clave: Actividad antifúngica, plantas medicinales, plantas del Perú, Amazonas, concentración mínima inhibitoria, Candida albicans, Aspergillus niger. / The present work investigated the antifungal activities in vitro of twelve ethanolic extracts corresponding to ten peruvian medicinal plants; Annona cherimolia Mill. (leaves), Annona muricata L. (bark and leaves), Bidens pilosa L. (aerial parts), Hypericum laricifolium L. (aerial parts), Juglans neotropica Diels (bark), Piper spp. (leaves), Plantago major L. (leaves), Psidium guajava L. (leaves), Schinus molle L. (bark and leaves) and Spartium junceum L. (whole plant). The plants were collected in the department of Amazonas, except Schinus molle L (Apurímac) and Annona muricata L. (Lima). The antifungal activities were determinated by the methods of agar diffusion and agar dilution for the determination of the Minimal Inhibitory Concentration (MIC). The used microorganisms of test were the yeasts Candida albicans ATCC 10231 and Candida albicans clinical isolate, as well as, the filamentous fungus Aspergillus niger ATCC 16404; the microorganism were provided by the Chair of Microbiology of Faculty of Pharmacy and Biochemistry of the Universidad Nacional Mayor de San Marcos. Of twelve investigated extracts, six presented significant antifungal activity with a diameter of inhibition haloes ³18mm (Agar Diffusion) against Candida albicans ATCC 10231. No extract showed significant activity against to Candida albicans clinical isolate and Aspergillus niger ATCC 16404. The MIC of the extracts that presented significant activity against Candida albicans ATCC 10231, were of 250µg/mL for Hypericum laricifolium L., Juglans neotropica Diels, Psidium guajava L. and Schinus molle L.(bark and leaf extracts) and of 500µg/mL for Piper spp. We do not determine the MIC of the extracts (Juglans neotropica Diels and Psidium guajava L.) that presented haloes against Aspergillus niger ATCC 16404 for considering them without significant activity (<18mm.). The antifungal agents Nistatin and Fluconazole were included in the study as positive controls. Key words: Antifungal activity, medicinal plants, Peruvian plants, Amazonas, minimal inhibitory concentration, Candida albicans, Aspergillus niger.
596

Pharmaceutical And Immunollogical Challenge Of Fungal Pathogens

Stylianou, Marios January 2015 (has links)
Incidences of fungal infections are on the rise in immunosuppressed people. Predominant causative agents for these mycoses are species of the genus Candida, including Candida albicans, Candida glabrata and Candida dublieniensis. Despite a wide range of emerging pathogens, C. albicans remains the leading cause. According to recent epidemiological studies, blood stream infections with C. albicans cause annually ~55% mortality in approximately 300,000 patients from intensive care units worldwide. Furthermore, the percentage of morbidity linked to oral, esophageal and vulvovaginal mycoses cause by C. albicans reach up to 90%. Reasons for these medical concerns are the lack of efficient diagnostics and antifungal therapy. Here, we therefore sought to find novel antifungal strategies inspired by innate immune cells, such as neutrophils. These phagocytes are able to block the fungal pathogenicity. Neutrophils are bloodstream leukocytes serving as the first line of defense against pathogenic microbes. It has been shown that neutrophils have a strong antifungal activity by impairing the conversion of the dimorphic C. albicans from yeast to hyphal form (Y-H). Consequently, we raised the question whether other immune cells, such as mast cells, with less phagocytic cabapilities may have similar activity to neutrophils. Mast cells are tissue-dwelling cells. Mucosal tissue is rich in mast cells and usually constitutes the entry ports for fungal pathogens into the human body. A contribution of mast cells in antifungal defense is, thus, very likely. We human explored mast cell functions upon encounter with fungal pathogens. Interestingly, human mast cells show a transient potential to impair fungal viability. To understand the mechanism behind this impairment we analyzed the human mast cell functions in more detail. We found that human mast cells challenged with C. albicans, immediately degranulate and secrete distinct cytokines and chemokines in an orchestrated manner. The chemokines secreted attract neutrophils. Mast cells moreover are able to internalize fungal cells and to ‘commit suicide’ by releasing extracellular DNA traps that ensnare the pathogen.   The effectiveness of future antifungals is depended on targeting the pathogen virulence with more efficiency. The dimorphism of C. albicans is proven to be essential its virulence. Blockage of this switching ability could render the pathogen avirulent. Consequently, we screened for compounds that mimic the neutrophils anti-dimorphic activity by screening small chemical molecule libraries that block Y-H transition. The screening of big chemical libraries requires a reliable, reproducible and rapid high-throughput screening assay (HTS). We developed an HTS assay based on automated microscopy and image analysis, thereby allowing to distinguish between yeast and filamentous forms. In order to find the ideal Y-H blocker, we also evaluated the cell viability via the count of ATP levels when challenged with the respective small chemical molecules.   Drug development is an elaborate and expensive process. We therefore applied our screening setup to identify antidimorphic/antifungal activity in compounds from two different chemical libraries including FDA-approved drugs. The study disclosed 7 off-patent antifungal drugs that have potent antimycotic activity, including 4 neoplastic agents, 2 antipsychotic drugs and 1 antianemic medication. In a nutshell, we aimed to mimic the anti-dimorphic/antifungal activity of neutrophils with small chemical molecules. Furthermore, we elucidated how immune cells contribute to antifungal defense to exploit these mechanisms for the development of novel antifungal therapies. Thus, this thesis provides novel tools for the discovery of more efficient compounds, identifies previously unknown antifungal aspect of off-patent FDA-approved drugs and highlights the interplay of mast cells with pathogenic fungi with the aim to define new screening strategies.
597

La réponse au Farnésol de Candida albicans : production de biofilms et Parenté génétique

Ross, Jean-françois 03 1900 (has links)
C. albicans est une levure pathogène opportuniste. Elle est un agent causal fréquent des infections muco-cutanées. C. albicans peut alterner entre la forme blastospore et mycélium. Cette dernière forme est impliquée dans la formation des biofilms. Le dimorphisme de C. albicans est contrôlé en partie par le phénomène de perception du quorum (quorum sensing) qui en autre, est associé à la molécule farnésol, produit par cette levure. La présence de cette molécule, inhibe la formation d’hyphe par C. albicans et par conséquent limite la formation de biofilms. Certaines souches ne répondent pas au farnésol et nous avons vérifié les hypothèses que : 1) la proportion des Non-Répondeurs (NR) au farnésol est similaire entre les souches de provenance orale et vaginale; 2) la capacité de formation de biofilm varie d’une souche à une autre mais les Non-Répondeurs en produisent en plus grande quantité; 3) la technique RAPD-PCR permettra de regrouper les souches de cette levure suivant leur provenance, leur capacité de formation de biofilm et leur aptitude à répondre au farnésol. La découverte d’une souche vaginale Non-Répondeur nous permet de croire que la proportion de ces souches est similaire entre les deux types de provenance. Les souches caractérisées Non-Répondeurs produisent 30 % plus de biofilm que les Répondeurs en absence de farnésol exogène dans le milieu. En présence de farnésol exogène, les Non-Répondeurs produisent 70 % plus de biomasse que les Répondeurs. De plus, la technique RAPD ne nous a pas permis de classer nos souches d’après les caractéristiques proposées. En conclusion, les souches orales de C. albicans semblent produire en moyenne plus de biomasse que les souches vaginales. Aussi, les NR semblent moins affectés par la présence du farnésol, ce qui pourrait causer la présence de biofilms tenaces. Les amorces utilisées pour la technique RAPD n’ont pas été efficace à la classification des souches dépendamment de leur provenance, de leur capacité à former un biofilm et à répondre au farnésol. Mots clés : Candida albicans, biofilm, perception du quorum (quorum sensing), farnésol, Non-Répondeur / The opportunistic dimorphic yeast Candida albicans is frequently associated with mucosal infections in humans. It can colonize both oral and vaginal mucous membranes. One of its virulence factors is the capacity to form or participate in biofilms formation. Biofilms are a community of bacteria embedded in a matrix of exopolysaccharide and provide protection against environmental stress and antibiotics. The dimorphic characteristic of this yeast is involved in biofilm formation and is controlled in part by the quorum sensing system. Recently, it has been shown that farnesol, a quorum sensing molecule, can control the formation of biofilms through the inhibition formation of hyphae. However, we have shown that some oral and vaginal strains can still form biofilms under the influence of exogenous farnesol and these strains were named Non-Responders (NR). We hypothesized that: 1) The proportion of Non-Responders is similar between oral and vaginal strains; 2) biofilm formation differs between strains but Non-Responders produce more of it; 3) The technique of RAPD-PCR will allow us to group strains according to their origin, biofilm formation and response to farnesol. The discovery of a NR vaginal strain leads us to believe that the proportion of NR is similar between oral and vaginal strains. The NR strains seem to produce 30 % more biofilm than Responders in media without exogenous farnesol. This percentage increased to 70 % when exogenous farnesol was added to the media. The RAPD technique did not allow us to group strains according to their proposed characteristic. In conclusion, oral strains seem to produce more biofilm than vaginal strains. The NR’s are less affected by farnesol and may cause persistent biofilms. The primers used for RAPD technique were not effective to discriminate C. albicans strains according to origin, capacity to form biofilms and farnesol responding. Key words: Candida albicans, biofilm, quorum sensing, farnesol, Non-Responders
598

Exploring AdoMet-dependent Methyltransferases in Yeast

Lissina, Elena 10 January 2014 (has links)
This work presents the investigation of fungal AdoMet-dependent methyltransferases. The first part of the dissertation focuses on two distinct methyltransferases with previously unknown functions in the budding yeast Saccharomyces cerevisiae and the human fungal pathogen Candida albicans. To characterize these enzymes I used a combinatorial approach that exploits contemporary high-throughput techniques available in yeast (chemical genetics, expression, lipid profiling and genetic interaction analysis) combined with rigorous biological follow-up. First, I showed that S. cerevisiae CRG1 (ScCRG1) is a small molecule methyltransferase that methylates cytotoxic drug cantharidin and is important for maintaining lipid homeostasis and actin cytoskeleton integrity in response to small-molecule cantharidin in the baker’s yeast. Similarly to ScCRG1, orf19.633 in the human fungal pathogen C. albicans (CaCRG1) methylates cantharidin and is important for GlcCer biosynthesis. I also demonstrated that CaCrg1 is a ceramide- and PIP-binding methyltransferase involved in Candida’s morphogenesis, membrane trafficking and fungal virulence. Together, the analysis of two genes in yeast illuminated the important roles of the novel small molecule methyltransferases in coupling drug response to lipid biosynthesis and fungal virulence. In the second part of my dissertation, I present the systematic characterization of the genetic architecture of the yeast methyltransferome by examining fitness of double-deletion methyltransferase mutants in standard and under environmental stress conditions. This analysis allowed me to describe specific properties of the methyltransferome network and to uncover functional relationships among methyltransferases inspiring multiple hypotheses and expanding the current knowledge of this family of enzymes.
599

Exploring AdoMet-dependent Methyltransferases in Yeast

Lissina, Elena 10 January 2014 (has links)
This work presents the investigation of fungal AdoMet-dependent methyltransferases. The first part of the dissertation focuses on two distinct methyltransferases with previously unknown functions in the budding yeast Saccharomyces cerevisiae and the human fungal pathogen Candida albicans. To characterize these enzymes I used a combinatorial approach that exploits contemporary high-throughput techniques available in yeast (chemical genetics, expression, lipid profiling and genetic interaction analysis) combined with rigorous biological follow-up. First, I showed that S. cerevisiae CRG1 (ScCRG1) is a small molecule methyltransferase that methylates cytotoxic drug cantharidin and is important for maintaining lipid homeostasis and actin cytoskeleton integrity in response to small-molecule cantharidin in the baker’s yeast. Similarly to ScCRG1, orf19.633 in the human fungal pathogen C. albicans (CaCRG1) methylates cantharidin and is important for GlcCer biosynthesis. I also demonstrated that CaCrg1 is a ceramide- and PIP-binding methyltransferase involved in Candida’s morphogenesis, membrane trafficking and fungal virulence. Together, the analysis of two genes in yeast illuminated the important roles of the novel small molecule methyltransferases in coupling drug response to lipid biosynthesis and fungal virulence. In the second part of my dissertation, I present the systematic characterization of the genetic architecture of the yeast methyltransferome by examining fitness of double-deletion methyltransferase mutants in standard and under environmental stress conditions. This analysis allowed me to describe specific properties of the methyltransferome network and to uncover functional relationships among methyltransferases inspiring multiple hypotheses and expanding the current knowledge of this family of enzymes.
600

Characterization of Candida species isolated from the oral mucosa of HIV-positive African patients

Abrantes, Pedro Miguel dos Santos January 2013 (has links)
<p>&nbsp / </p> <p align="left">One of the most common HIV-associated opportunistic infections is candidiasis, caused by <i><font face="TimesNewRoman,Italic">Candida albicans </font></i><font lang="KO" face="TimesNewRoman">or other </font><i><font face="TimesNewRoman,Italic">Candida </font><font lang="KO" face="TimesNewRoman">species. In immune suppressed subjects, this commensal organism can cause an increase in patient morbidity and mortality due to oropharyngeal or systemic dissemination. Limited information exists on the prevalence and antifungal susceptibility of </font><i><font face="TimesNewRoman,Italic">Candida </font><font lang="KO" face="TimesNewRoman">species in the African continent, the most HIV-affected region globally and home to new and emerging drug resistant </font><i><font face="TimesNewRoman,Italic">Candida </font><font lang="KO" face="TimesNewRoman">species. The mechanisms of </font><i><font face="TimesNewRoman,Italic">Candida </font><font lang="KO" face="TimesNewRoman">drug resistance in the African continent have also not been described. In this study, 255 </font><i><font face="TimesNewRoman,Italic">Candida </font><font lang="KO" face="TimesNewRoman">species isolated from the oral mucosa of HIV-positive South African and Cameroonian patients were identified using differential and chromogenic media and their drug susceptibility profiles tested using the disk diffusion method and the TREK Sensititre system, an automated broth microdilution method. </font><i><font face="TimesNewRoman,Italic">Candida </font><font lang="KO" face="TimesNewRoman">cell wall fractions were run on SDSPAGE and HPLC-MS with the aim of identifying peptides specifically expressed by antifungal drug resistant isolates. Comparisons between the two groups of isolates revealed differences in </font><i><font face="TimesNewRoman,Italic">Candida </font><font lang="KO" face="TimesNewRoman">species prevalence and drug susceptibility with interesting associations observed between specific drug resistance and duration of ARV therapy. This study showed that fluconazole, the drug of choice for the treatment of candidiasis in the African continent, is not an effective therapy for most cases of </font><i><font face="TimesNewRoman,Italic">Candida </font><font lang="KO" face="TimesNewRoman">infection, and suggests that regional surveillance be implemented in the continent. A multiple-drug resistant </font><i><font face="TimesNewRoman,Italic">Candida </font><font lang="KO" face="TimesNewRoman">strain was identified in this study, a finding that has not previously been documented. The use of proteomics tools allowed for the identification of peptides involved in drug resistance and the elucidation of </font><i><font face="TimesNewRoman,Italic">Candida </font><font lang="KO" face="TimesNewRoman">colonization mechanisms in HIV-infected African patients.</font></i></i></i></i></i></i></i></i></i></i></p>

Page generated in 0.027 seconds