• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 134
  • 36
  • 34
  • 25
  • 19
  • 9
  • 8
  • 4
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 363
  • 363
  • 100
  • 93
  • 81
  • 73
  • 59
  • 54
  • 50
  • 46
  • 39
  • 37
  • 36
  • 31
  • 28
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
231

Selective Observations of Chemical Structures of Heat-treated Poly(acrylonitrile) Films at The Surface and Core Regions by Solid-state NMR

Ma, Jiayang 26 June 2019 (has links)
No description available.
232

Design of a Carbon Fiber Thermocouple for Elevated Temperature Measurements

Holmström, Marcus January 2020 (has links)
Thermocouples are one of the most commonly used instruments for thermometry at elevated  temperatures. As of today, there are only a few types of thermocouples that are built to withstand a temperature beyond 1600 °C,however they usually have a temperature measurement uncertainty of around 1% at these high temperatures. Beyond the 1600 °C temperature span, most high temperature thermocouples tend to drift in the measurements, causing it to output a faulty and inaccurate read of the actual temperature. This thesis explores the usage of carbon fibers as a material to be used in thermocouples, by the combination of two dissimilar carbon fibers. Polyacrylonitrile (PAN) and rayon based fibers were used up to a temperature of 200 °C, where the output voltage of the thermocouple was logged. The study shows a promising and stable linear output of the electromotive force for this type of thermocouple using commercially available carbon fibers at lower temperatures. A comparison is made between the commonly used thermocouples type K and S, results shows that the carbon thermocouple have around 21% of the thermoelectrical efficiency of that of a type K or S thermocouple at 25 °C. For the case of its functionality at higher temperatures, similar graphite material has been studied through literature and found a potential increase in the thermoelectrical stability at higher temperatures beyond 2000 °C, which show that carbon-based thermocouples are well suited for high temperature measurements. / Termoelement är ett av de mest använda instrumenten för temperaturavläsning vid upphöjda temperaturer. Idag finns det bara några få typer av termoelement som är byggda för temperaturer över 1600 ℃, däremot innehar dom vanligtvis en temperaturmätnings osäkerhet på cirka 1% vid dessa höga temperaturer. Över 1600 ℃ temperaturintervallet har de flesta högtemperatur termoelement en tendens att skifta i mätningarna vilket orsakar en felaktig och inexakt mätning av den faktiska temperaturen. Denna avhandling undersöker användningen av kolfiber som ett material för användning i termoelement, genom kombinationen av två olika grafitfibrer. Polyacrylonitrile- (PAN) och Rayon-baserade fibrer användes i en sammansatt kombination upp till en temperatur av 200 ℃, där spänningen mättes mot temperaturen. Studien visar en lovande och stabil linjär effekt av dess elektromotoriska spänning för denna typ av termoelement med kommersiellt tillgängliga kolfibrer vid lägre temperaturer. En jämförelse görs mellan de vanliga termoelementen av typ K och S vid rumstemperaturer, resultaten visar att grafittermoelementen har cirka 21% av den termoelektriska effektiviteten hos den för en typ K eller S termoelement vid 25 ℃. När det gäller dess funktionalitet vid högre temperaturer har liknande grafitmaterial studerats och funnit en potentiell ökning av den termoelektriska stabiliteten vid högre temperaturer över 2000 ℃, vilket visar att grafitbaserade termoelement gör sig väl lämpade för högtemperaturmätningar.
233

[pt] ANÁLISE EXPERIMENTAL DA ADERÊNCIA ENTRE O CONCRETO E COMPÓSITOS COM TECIDO DE FIBRAS DE CARBONO / [en] EXPERIMENTAL ANALISYS ON BOND BETWEEN CONCRETE AND CARBON FIBER COMPOSITES FABRIC

JULIANA MARTINELLI MENEGHEL 02 January 2006 (has links)
[pt] É descrito neste trabalho um programa experimental sobre a aderência entre os compósitos com tecido de fibras de carbono e o concreto. Este programa experimental consistiu em ensaios de tração-compressão de corpos-de-prova compostos de dois blocos de concreto (móvel e fixo) colados por tiras de tecido de fibra de carbono coladas nos lados opostos desses blocos. Foram ensaiados nove corpos-de-prova, com três resistências à compressão aos 28 dias de 20,5 MPa, 28,7 MPa e 38,1 MPa e duas larguras do tecido iguais a 50 mm e 100 mm. Todos os corpos-de-prova foram concretados, instrumentados e ensaiados no Laboratório de Estruturas e Materiais da PUC-Rio. O objetivo deste trabalho foi estudar a influência da resistência do concreto e da largura do tecido de fibra de carbono sobre a resistência de aderência do sistema. Os resultados mostraram que a resistência de aderência pode ser considerada independente da resistência do concreto e da largura do tecido. Foi obtido, neste estudo, um valor característico de 1,45 MPa para a resistência de aderência. / [en] An experimental study on the bond between carbon fiber fabric composites and concrete is described in this work. This experimental program consisted of tension-compression tests of specimens with two concrete blocks (movable and fixed) jointed by carbon fiber fabric strips bonded on two opposite sides of these blocks. Nine specimens, with three concrete compressive strength of 20,5MPa , 28,7MPa and 38,1MPa at 28 days and two fabric width of 50 mm and 100 mm, were tested. All specimens had the same geometrical characteristics. All the specimens were cast, instrumented and tested in the Structural and Materials Laboratory at PUC-Rio. The objective of this work was to study the influence of concrete strength and the width of the fabric on the bond strength of the system. The results showed that the ultimate bond strength may be considered independent of concrete strength and of the width of the fabric. A characteristic value of 1.45 MPa was found for the bond strength.
234

Carbon Fiber Reinforced Polymer Repairs of Impact-Damaged Prestressed I-Girders

Brinkman, Ryan J. January 2012 (has links)
No description available.
235

Void Modeling in Resin Infusion

Brandley, Mark Wesley 01 June 2015 (has links) (PDF)
Resin infusion of composite parts has continually been reaching to achieve laminate quality equal to, or exceeding, the quality produced with prepreg in an autoclave. In order for this to occur, developers must understand the key process variables that go in to producing a laminate with minimal void content. The purpose of this research is to continue efforts in understanding 1) the effect of process conditions on the resultant void content, with a focus on resin infusion flow rate, 2) applying statistical metrics to the formation, location and size of voids formed, and 3) correlate these metrics with the local mechanical properties of the composite laminate. The variation in dispersion and formation of micro-voids and macro-voids varied greatly between the rates of flow the infusion occurred, especially in the non-crimp carbon fiber samples. Higher flow rates led to lower volumes of micro-voids in the beginning section of the carbon fiber laminates with macro-voids being introduced approximately half-way through infusion. This was determined to have occurred decreasing pressure gradient as the flow front moved away from the inlet. This variation in void content per location on the laminate was more evident in the carbon fiber samples than the fiberglass samples. Micro-voids follow void formation modeling especially when coupled with a pressure threshold model. Macro-void formation was also demonstrated to correlate strongly to void formation models when united with void mobility theories and pressure thresholds. There is a quick decrease in mechanical properties after the first 1-2% of voids signaling strength is mostly sensitive to the first 0-2% void content. A slight decrease in SBS was noticed in fiberglass laminates, A-F as v0 increased but not as drastically as represented in the NCF laminates, G and H. The lower clarity in the exponential trend could be due to the lack of samples with v0 greater than 0% but less than 1%. Strength is not well correlated to void content above 2% and could possibly be related to void morphololgy.
236

Influence of Consolidation and Interweaving on Compression Behavior of IsoTruss™ Structures

Hansen, Steven Matthew 09 March 2004 (has links) (PDF)
Composite IsoTruss™ structures incorporate intersecting longitudinal and helical members. At the intersections, the fiber tows can be interwoven to achieve mechanical interlocking for increased joint integrity. Interlocking introduces gaps and curvilinear fiber paths similar to the crossovers in filament-wound structures, potentially facilitating local delamination within the members, thus reducing the strength and/or damage tolerance of the structure. Optimizing the interlocking pattern at the joints along with efficient consolidation minimizes these effects. Joint specimens were fabricated using a specially designed machine. Specific tow intersection patterns at the joint were: 1) Completely encapsulating the longitudinal member with the tows of the helical member; and 2) Interweaving the tows of the helical member with the tows of the longitudinal member. Consolidation was accomplished using: 1) a braided sleeve; 2) a coiled sleeve; 3) a sparse spiral Kevlar® wrap; 4) a polyester shrink tape sleeve; 5) twisting the entire bundle of longitudinal fiber tows; and 6) cinching the joints using aramid fiber. Ultimate compression strength and stiffness is directly related to the straightness of the tows in the longitudinal members at the intersections. An encapsulated joint reduces member strength by only 4.6%; whereas, an interwoven joint reduces member strength by 30.5%. The fiber paths of the longitudinal member in encapsulated joints are straighter than in interwoven joints, resulting in an average strength difference of 26.2%. Physical properties, strength, and stiffness show that consolidation quality directly affects performance. Consolidation using sleeves provides high quality consolidation, high strength, and high stiffness. Encapsulated joints consolidated using sleeves have an average ultimate strength and Young's modulus 34% and 21% higher, respectively, than encapsulated joints consolidated using other methods. Interwoven joints consolidated using sleeves have an average ultimate strength and Young's modulus 28% and 19% higher, respectively, than interwoven joints consolidated using other methods. Consolidating specimens using a braided sleeve yields the highest quality based on consistency, strength, and stiffness. Consolidating specimens by twisting the longitudinal member yields the lowest strength and stiffness. These conclusions will be applied to IsoTrussâ„¢ grid structure design and manufacturing technology.
237

Compressibility Measurement and Modeling to Optimize Flow Simulation of Vacuum Infusion Processing for Composite Materials

Hannibal, Paul 01 February 2015 (has links) (PDF)
Out-of-autoclave manufacturing processes for composite materials are increasing in importance for aerospace and automotive industries. Vacuum Infusion processes are leading the push to move out of the autoclave. An understanding of the various process parameters associated with resin infusion is necessary to produce quality product. Variance in compaction, resin, and vacuum pressures are studied, concentrating on developing a compaction pressure profile as it relates to fiber volume fraction. The purpose of this research is twofold: (1) to show and quantify the existence of a resin pressure gradient in compression testing using rigid tooling, and (2) to use measured test data to validate and improve resin flow simulation models. One-dimensional compression tests revealed a pressure gradient across the diameter of the compression tool. The pressure gradient follows trends consistent with Darcy's Law. Compression tests revealed fabric hysteresis during compaction as shown in previous studies. Fiber compaction pressure was found to not be directly equal to compressive forces of the Instron when resin is present in the system. The relationship between Instron, resin and compaction pressures is defined. The compression study was used to validate previously developed flow simulation models. Resin pressures are critical to developing an accurate two-dimensional radial flow simulation for low permeability fabrics. It is feasible to determine final fiber volume fraction at a given compaction pressure.
238

An Investigation Into the Properties and Fabrication Methods of Thermoplastic Composites

Livingston-Peters, Ann E 01 June 2014 (has links) (PDF)
As applications for thermoplastic composites increase, the understanding of their properties become more important. Fabrication methods for thermoplastic composites continually improve to match designs specifications. These advanced thermoplastics have begun to show an improvement in mechanical properties over those found in thermoset composites commonly used in industry. Polyaryletherketones (PEK) have high service temperatures, good mechanical properties, and improved processing capabilities compared to thermoplastics used in the past making them important to the aerospace industry. The wide range of types of PEK make them suitable for a variety of applications, but selection of specific chemistries, processing parameters, and composite stack-ups determine the mechanical properties produced. Differential scanning calorimetry (DSC), and Fourier transform infrared spectroscopy (FTIR) were used to determine crystallinity and chemical properties of several polyaryletherketones. Tensile, compressive, and Mode I interlaminar fracture toughness tests were conducted to analyze mechanical properties of these advanced thermoplastics. Several fabrication processes were also tested to determine optimal consolidation and aesthetic appearance of structural members. All testing was conducted at The Boeing Company in Seattle, Washington. Because all testing and conclusions are proprietary a general synopsis of the experience will be presented.
239

Fracture Toughness of Carbon Fiber Composite Material

Rea, Allison 14 December 2022 (has links)
No description available.
240

Electrolysis of Ammonia Effluents: A Remediation Process with Co-generation of Hydrogen

Bonnin, Egilda Purusha 22 September 2006 (has links)
No description available.

Page generated in 0.0227 seconds