• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 562
  • 247
  • 106
  • 89
  • 25
  • 20
  • 11
  • 8
  • 6
  • 6
  • 5
  • 4
  • 3
  • 3
  • 2
  • Tagged with
  • 1382
  • 1382
  • 248
  • 244
  • 168
  • 147
  • 144
  • 137
  • 127
  • 107
  • 104
  • 102
  • 102
  • 99
  • 97
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

The bioelectrochemistry of enzymes and their cofactors at carbon nanotube and nitrogen-doped carbon nanotube electrodes

Goran, Jacob Michael 01 September 2015 (has links)
This dissertation explores the electrochemical behavior of enzymes and their cofactors at carbon nanotube (CNT) and nitrogen-doped carbon nanotube (N-CNT) electrodes. Two common types of oxidoreductases are considered: flavin adenine dinucleotide (FAD)-dependent oxidases and nicotinamide adenine dinucleotide-dependent (NAD⁺)-dehydrogenases. Chapter 1 presents the oxygen reduction reaction (ORR) at N-CNT electrodes as a way to electrochemically measure enzymatic turnover at the electrode surface. The unique peroxide pathway at N-CNT electrodes, which catalytically disproportionates hydrogen peroxide (H₂O₂) back into oxygen, provides an increased ORR current directly proportional to the rate of enzymatic turnover for H₂O₂ producing enzymes, even in an oxygen saturated solution. Biosensing of L-lactate using the increased ORR current is demonstrated using L-lactate oxidase. Chapter 2 explores the surface bound electrochemical signal of FAD when FAD-dependent enzyme or free FAD is allowed to spontaneously adsorb onto the CNT/N-CNT surface. Specifically, the origin of the enzymatically generated FAD signal and the rate constant of the electron transfer are elucidated. Chapter 3 continues the discussion of the cofactor FAD by demonstrating its use as an informative surface specific redox probe for graphitic carbon surfaces. Primarily, FAD can be used to determine the electroactive surface area and the relative hydrophobicity/hydrophilicity of graphitic surfaces. Chapter 4 changes gears to NAD⁺-dependent dehydrogenases by investigating the electrocatalytic oxidation of NADH at N-CNTs in comparison with conventional carbon electrodes or nondoped CNTs. Biosensing of glucose through the oxidation of NADH is demonstrated using glucose dehydrogenase adsorbed onto the N-CNT surface. Chapter 5 continues the discussion of NAD⁺-dependent dehydrogenases by addressing the reaction kinetics of NADH oxidation at N-CNTs as a tool to measure the enzymatic reduction of NAD⁺.
62

Three-Dimensional Carbon Nanostructure and Molybdenum Disulfide (MoS2) for High Performance Electrochemical Energy Storage Devices

Patel, Mumukshu D. 12 1900 (has links)
My work presents a novel approach to fabricate binder free three-dimensional carbon nanotubes/sulfur (3DCNTs/S) hybrid composite by a facile and scalable method increasing the loading amount from 1.86 to 8.33 mg/cm2 highest reported to date with excellent electrochemical performance exhibiting maximum specific energy of ~1233Wh/kg and specific power of ~476W/kg, with respect to the mass of the cathode. Such an excellent performance is attributed to the fact that 3DCNTs offers higher loading amount of sulfur, and confine polysulfide within the structure. In second part of the thesis, molybdenum disulfide (MoS2) is typically studied for three electrochemical energy storage devices including supercapacitors, Li-ion batteries, and hybrid Li-ion capacitors. The intrinsic sheet like morphology of MoS2 provides high surface area for double layer charge storage and a layered structure for efficient intercalation of H+/ Li+ ions. My work demonstrates the electrochemical analysis of MoS2 grown on different substrates including copper (conducting), and carbon nanotubes. MoS2 film on copper was investigated as a supercapacitor electrode in three electrode system exhibiting excellent volumetric capacitance of ~330F/cm3 along with high volumetric power and energy density in the range of 40-80 W/cm3 and 1.6-2.4 mWh/cm3, respectively. Furthermore, we have developed novel binder-free 3DCNTs/ MoS2 as an anode materials in half cell Li-ion batteries. The vertically oriented morphology of MoS2 offers high surface area and active electrochemical sites for efficient intercalation of Li+ ions and demonstrating excellent electrochemical performance with high specific capacity and cycling stability. This 3DCNTs/ MoS2 anode was coupled with high surface area southern yellow pine derived activated carbon (SYAC) cathode to obtain hybrid 3DCNTs/ MoS2 || SYAC Li-ion capacitor (LIC), which delivers large operating voltage window of 1-4.0V with excellent cycling stability exhibiting capacitance retention of ~80% after 5000 cycles.
63

COMPOSITES OF MULTI-WALLED CARBON NANOTUBES WITH POLYPROPYLENE AND THERMOPLASTIC OLEFIN BLENDS PREPARED BY MELT COMPOUNDING

Petrie, Kyle 02 October 2013 (has links)
Composites of multi-walled carbon nanotubes (MWCNTs) with polypropylene (PP) and thermoplastic olefins (TPOs) were prepared by melt compounding. Two non-covalent functionalization methods were employed to improve nanotube dispersion and the resulting composite properties are reported. The first functionalization approach involved partial coating of the surface of the nanotubes with a hyperbranched polyethylene (HBPE). MWCNT functionalization with HBPE was only moderately successful in breaking up the large aggregates that formed upon melt mixing with PP. In spite of the formation of large aggregates, the samples were conductive above a percolation threshold of 7.3 wt%. MWCNT functionalization did not disrupt the electrical conductivity of the nanotubes. The composite strength was improved with addition of nanotubes, but ductility was severely compromised because of the existence of aggregates. The second method involved PP matrix functionalization with aromatic moieties capable of π-π interaction with MWCNT sidewalls. Various microscopy techniques revealed the addition of only 25 wt% of PP-g-pyridine (Py) to the neat PP was capable of drastically reducing nanotube aggregate size and amount. Raman spectroscopy confirmed improved polymer/nanotube interaction with the PP-g-Py matrix. Electrical percolation threshold was obtained at a MWCNT loading of approximately 1.2 wt%. Electrical conductivity on the order of 10-2 S/m was achieved, suggesting possible use in semi-conducting applications. Composite strength was improved upon addition of MWCNTs. The matrix functionalization with Py resulted in a significant improvement in composite ductility when filled with MWCNTs in comparison to its maleic anhydride (MA) counterpart. Preliminary investigations suggest that the use of alternating current (AC) electric fields may be effective in aligning nanotubes in PP to reduce the filler loading required for electrical percolation. Composites containing MWCNT within PP/ethylene-octene copolymer (EOC) blends were prepared. Microscopy revealed that MWCNTs localized preferentially in the EOC phase. This was explained by the tendency of the system to minimize interfacial energy when the MWCNTs reside in the thermodynamically preferential phase. A kinetic approach, which involved pre-mixing the MWCNTs with PP and adding the EOC phase subsequently was attempted to monitor the migration of MWCNTs. MWCNTs began to migrate after two minutes of melt mixing with the EOC. The PP-g-Py matrix functionalization appears to slightly delay the migration. A reduction in electrical percolation threshold to 0.5 wt% MWCNTs was achieved with a co-continuous blend morphology, consisting of a 50/50 by weight ratio of PP and EOC. / Thesis (Master, Chemical Engineering) -- Queen's University, 2013-09-30 13:22:24.499
64

Processing and properties of aligned carbon nanotube/glass ceramic composite

Otieno, Geoffrey January 2012 (has links)
Previous attempts to produce carbon nanotube (CNT) ceramic composites have resulted in poorly dispersed, unaligned and non-continuous CNTs in the composites with modest improvements in properties. The research presented in this thesis pertains to the production of dense aluminoborosilicate (ABS) glass matrix composites containing aligned and continuous multi- walled carbon nanotubes (MWCNT) of millimetre lengths. This was achieved by infiltrating CVD grown MWCNT preforms using a precursor sol and sintering which achieved 80 ± 2% dense composites. Focused ion beam milling together with image analysis showed that the composites contained 20 ± 2 vol.% MWCNTs, which are aligned and continuous within the glass matrix. Indentation studies showed greater damage tolerance in the composite compared to unreinforced ABS glass. Under compression, there is no significant change in the compressive strength between the composite and the unreinforced glass. The bend strength of microcantilever beams were 1.4 to 1.3 GPa for the composite and glass respectively. Elastic modulus of 84 GPa and fracture toughness (Kic of up to 2.4 MPa √m were obtained for the composite. The elastic modulus and fracture toughness results are an improvement of 30 % and 240 % over that of unreinforced ABS glass. Fracture surfaces showed apparent MWCNT pullout lengths of up to ~ 1 urn. Analysis indicates that crack bridging by intact MWCNTs provides the majority of the improvement in fracture toughness. Interlayer sliding of the MWCNTs and "sword in' sheath" failure mechanism of the MWCNTs prevented the maximum potential performance, with respect to elastic modulus and fracture toughness, from being achieved. Electrical conductivity in the alignment direction of the CNTs showed improvements by a factor of 106 compared to unreinforced ABS glass. Furthermore, improvement of a factor of ~ 10 in the thermal conductivity was obtained for the composite over that of ABS glass.
65

Synthesis and use of carbon nanotubes as a support for the Fischer-Tropsch Synthesis.

Bahome, Munga Christian 29 February 2008 (has links)
Abstract Carbon nanotubes (CNTs) were grown catalytically by a chemical vapor deposition method and characterized by a range of techniques. Fe, Ru and Co catalysts supported on the carbon nanotubes were prepared and investigated for their performances in the Fischer-Tropsch synthesis. CNTs were synthesized in a quartz tubular reactor at atmospheric pressure and at temperatures of 700°C over iron supported on CaCO3 using C2H2 as carbon source. Prior to CNT synthesis, the iron catalyst was first reduced under the same conditions (700°C and atmospheric pressure) in a flow of 5% H2 balanced in Argon. The catalyst, for the preparation of the CNTs, was prepared by the incipient wetness impregnation. The purification of the CNTs was performed with 30 wt % HNO3. Characterization of the CNTs using TEM, SEM, HRTEM, BET and TPR revealed that the crude product contained solely CNTs, catalysts particles and support, while no amorphous carbon was observed. The purified product is comprised of an interwoven matrix of tubes that were shown to be multi-walled (MWCNTs). CNT supported FT based catalysts were also prepared by an incipient wetness impregnation method and tested in a plug flow reactor in Fischer-Tropsch synthesis. The TEM images of the different FT catalysts supported on CNTs revealed that the catalyst particles are well dispersed on the surface of the CNTs. The catalyst particles were very iii small, and some residual Fe catalyst material, not removed by the acid treatment, could clearly be seen on the surface of the CNTs. The reduction and metal dispersion properties of the catalysts were investigated through TPR and chemisorption techniques. A TPR study showed three reduction steps for Co catalysts, and addition of Ru to the catalyst decreased the reduction temperature of the catalysts. Gasification of the CNTs was noted to occur at temperatures higher than 600°C. The effect of metal catalyst loading and promoters on the activity and selectivity of CNT supported FT synthesis catalysts was studied under condition of 275°C, 8 bar, CO/H2 = 1/2 and different flow rates. The FT catalysts supported on carbon nanotubes displayed a high CO conversion and excellent stability with time on stream in the Fischer-Tropsch synthesis. Fe catalysts displayed the lowest methane selectivity compared to all other FT synthesis catalysts used in this study.
66

Investigation of Structure-Property Relationship of a High Temperature Polyimide Reinforced with Nanoparticles

Unknown Date (has links)
Nano-reinforced polymeric systems have demonstrated a great deal of interest within academia and industry, due to the intrinsic properties of the graphene nanofillers, having excellent mechanical, thermal and electrical properties. The reinforcement of multiwall carbon nanotubes (MWCNTs) and graphene nanoplatelets (GNPs) were introduced into a low cost, non-carcinogenic, high temperature PMR type polyimide resin. The effects of the interfacial interaction and dispersion quality resulted in improvement in the glass transition temperature (Tg), elastic modulus and thermal stability by, 31°C, 63% and 16°C, respectively. In fine, this study presents a simple but effective high temperature polyimide (HTPI) nanocomposites manufacturing procedure and established that nanoparticle reinforcement can be used to improve both thermal and mechanical properties. / Includes bibliography. / Thesis (M.S.)--Florida Atlantic University, 2018. / FAU Electronic Theses and Dissertations Collection
67

Manufacturing strategy for high current cold field emission cathodes : floating catalyst chemical vapour deposition grown carbon nanotube fibres and films enhanced by laser patterning and laser purification process

Orozco Nieto, Pedro Francisco January 2018 (has links)
The aim of this work is to produce a manufacturing strategy for high current (>10 mA) field emission (FE) devices for military (microwave generation) and civilian (particle accelerator electron beam) applications using carbon nanotubes (CNT) as base material. With a particular focus on the relationship of the laser time pulse duration used for cutting CNTs and how this affects the field emission performance. Material selection for this work was narrowed to CNT as they possess unique characteristics such as: high aspect ratio; high thermal conductivity; high chemical stability and high current carrying capacities up to a theoretical limit of 1,200 MA∙cm-1 making them an ideal material for FE. The CNT material studied in this work is produced in two distinct forms, fibres (∅~7-10 μm) and films (h~30 μm), using a floating catalyst chemical vapour deposition process which produces high quantities of CNT material with mixed mechanical and electrical properties. The material is difficult to handle because of its dimensions and is susceptible to environmental changes i.e. electrostatic forces. In order to reduce the variability in electrical properties, a laser purification process was developed. The process consists of locally irradiating an infra-red (IR) laser several microseconds directly at the material. A percentage is vaporised (mainly non-conductive or defective material) and the remaining CNT material shows very high crystallinity with an increase of up to ten times (G/D ratio > 100) compared to the original material and electron mean free path is increased by an order of magnitude. The production strategy is based on directly coating the CNT material with copper using an electroplating process. This allowed for CNT fibre and film to be easily handled and improved the overall electrical contact. Emitter geometry was customised by a laser cutting process to achieve increased enhancement factor geometries, in this case, triangles with 29 tips whilst reducing FE variability. FE performance was quantified by testing the devices in a continuous DC mode with a sweep up to 1,000 V until the material suffered catastrophic failure. The gap distance between the tip of the triangles and the anode was varied to increase the electric field until failure. FE results using the production strategy improved more than 400% compared to untreated material. Applications for these devices are intended to be in the creation of high energy electron beam lines and generation of high powered directed microwaves.
68

Growth of carbon nanotubes using bimetallic catalysts

Hardeman, David January 2016 (has links)
No description available.
69

Large scale simulations of conduction in carbon nanotube networks

Bell, Robert Andrew January 2015 (has links)
No description available.
70

The interaction of electromagnetic radiation with carbon nanotube fibres

James, Matthew Philip William January 2014 (has links)
No description available.

Page generated in 0.033 seconds