• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Innate immunity in human atherosclerosis and myocardial infarction : Role of CARD8 and NLRP3

Paramel Varghese, Geena January 2017 (has links)
Atherosclerosis is complex inflammatory disease of the arterial wall with progressive accumulation of lipids and narrowing of the vessel. Increasing evidence suggest that inflammation plays an important role in plaque stability and often accelerate cardiovascular events such as myocardial infarction (MI). Among the vast number of inflammatory cytokines, IL-1β is known to be a key modulator in vessel wall inflammation and acceleration of the atherosclerotic process. The biologically active IL-1β is regulated by a multiprotein complex known as the NLRP3 inflammasome complex. In this thesis, we have focused on polymorphisms in the NLRP3 and CARD8 genes and their possible association to atherosclerosis and/or MI. We have also investigated the expression of inflammasome components NLRP3 and CARD8 in atherosclerosis and the role of genetic variants for the expression of these genes. The expression of NLRP3, CARD8, ASC, caspase-1, IL-1β, and IL-18 were found significantly upregulated in atherosclerotic lesions compared to normal arteries. Human carotid plaques not only express the NLRP3 inflammasome, but also release IL-1β upon exposure to lipopolysaccharide (LPS), adenosine triphosphate (ATP) and cholesterol crystals, which suggest NLRP3 inflammasome activation in human atherosclerotic lesions. Also, CARD8 was found to be important in the regulation of several inflammatory markers in endothelial cells, like RANTES, IP10 and ICAM-1. We further assessed the potential association of a CARD8 polymorphism and polymorphisms located downstream of the NLRP3 gene to the risk of MI in two independent Swedish cohorts. The CARD8 variant exhibited no association to risk of MI in either of the two cohorts. Some of the minor alleles of NLRP3 variants were associated with increased IL-1β levels and to NLRP3 mRNA levels in peripheral blood monocytic cells (PBMC). Taken together, the present thesis shows that NLRP3 inflammasome activation and increased expression of CARD8 in the atherosclerotic plaque might be possible contributors to the enhanced inflammatory response and leukocyte infiltration in the pathophysiology of atherosclerosis.
2

Proteolytic Processing of Nlrp1b in the FIIND Domain is Required for Inflammasome Activity

Frew, Bradley 21 March 2012 (has links)
Nlrp1b is a NOD-like receptor of the innate immune system that upon sensing of anthrax lethal toxin oliogmerizes and forms a protein scaffold that binds to and activates pro-caspase-1; this complex is called an inflammasome. Nlrp1b is highly polymorphic and different alleles display an all or none ability to sense lethal toxin. Here I show that Nlrp1b is cleaved in the FIIND domain, and that the cleaved fragments remain associated even after activation by lethal toxin. The inflammasome activity of an inactive allele was restored by three mutations, one of which also restored cleavage. A heterologous cleavage site was inserted into an uncleaved mutant of Nlrp1b; induced proteolysis of the cleavage site rescued inflammasome activity. An uncleaved mutant of Nlrp1b showed no deficiency in FIIND self-association, but did have reduced recruitment of pro-caspase-1. These data provide evidence that cleavage of Nlrp1b is required for proper recruitment and activation of caspase-1.
3

Proteolytic Processing of Nlrp1b in the FIIND Domain is Required for Inflammasome Activity

Frew, Bradley 21 March 2012 (has links)
Nlrp1b is a NOD-like receptor of the innate immune system that upon sensing of anthrax lethal toxin oliogmerizes and forms a protein scaffold that binds to and activates pro-caspase-1; this complex is called an inflammasome. Nlrp1b is highly polymorphic and different alleles display an all or none ability to sense lethal toxin. Here I show that Nlrp1b is cleaved in the FIIND domain, and that the cleaved fragments remain associated even after activation by lethal toxin. The inflammasome activity of an inactive allele was restored by three mutations, one of which also restored cleavage. A heterologous cleavage site was inserted into an uncleaved mutant of Nlrp1b; induced proteolysis of the cleavage site rescued inflammasome activity. An uncleaved mutant of Nlrp1b showed no deficiency in FIIND self-association, but did have reduced recruitment of pro-caspase-1. These data provide evidence that cleavage of Nlrp1b is required for proper recruitment and activation of caspase-1.

Page generated in 0.0223 seconds