• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 1
  • 1
  • Tagged with
  • 7
  • 7
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Coherent Anti-Stokes Raman Scattering Microscopy for Biomedical Applications

Yousif, Huda January 2018 (has links)
Coherent anti-Stokes Raman scattering (CARS) microscopy is considered as a powerful tool for non-invasive chemical imaging of biological samples. CARS microscopy provides an endogenous contrast mechanism that it is sensitive to molecular vibrations. CARS microscopy is recognized as a great imaging system, especially in vivo experiments since it eliminates the need for the contrast agents. In this thesis, CARS microscopy/spectroscopy is built from scratch by employing a single (Ti-Sapphire) laser source generating 65 femtosecond laser pulses centered at 800 nm wavelength. Two closely lying zero dispersion photonic crystal fiber (PCF) is used to generate the supercontinuum for the Stokes beam to generate CARS at 2885 cm-1 to match lipids rich vibrational frequency. XY galvanometers are used for laser raster scanning across the sample. The initial generation of CARS signal was in the forward direction. After guaranteeing a strong CARS signal, images for chemical and biological samples were taken. To achieve a multimodal imaging technique, CARS microscopy imaging system is combined with two- photon excitation fluorescent (TPEF) and second harmonic generation (SHG) imaging techniques, where various information was extracted from the imaged samples. Images with our CARS microscopy show a good resolution and sensitivity. The second part of my work is to reduce the footprint for this setup to make it more suitable for use in clinical applications. For that reason, I integrated a homebuilt endoscope and all fiber femtosecond laser source together to get a fiber based imaging system. Proof of principal for the integrated system is achieved by obtaining a reasonable agreement in accuracy and resolution to those obtained by the endoscope driven by Ti-sapphire laser.
2

Developing Single-Laser Sources for Multimodal Coherent Anti-Stokes Raman Scattering Microscopy

PEGORARO, ADRIAN FRANK 11 August 2011 (has links)
Coherent anti-Stokes Raman scattering (CARS) microscopy has developed rapidly and is opening the door to new types of experiments. This work describes the development of new laser sources for CARS microscopy and their use for different applications. It is specifically focused on multimodal nonlinear optical microscopy—the simultaneous combination of different imaging techniques. This allows us to address a diverse range of applications, such as the study of biomaterials, fluid inclusions, atherosclerosis, hepatitis C infection in cells, and ice formation in cells. For these applications new laser sources are developed that allow for practical multimodal imaging. For example, it is shown that using a single Ti:sapphire oscillator with a photonic crystal fiber, it is possible to develop a versatile multimodal imaging system using optimally chirped laser pulses. This system can perform simultaneous two photon excited fluorescence, second harmonic generation, and CARS microscopy. The versatility of the system is further demonstrated by showing that it is possible to probe different Raman modes using CARS microscopy simply by changing a time delay between the excitation beams. Using optimally chirped pulses also enables further simplification of the laser system required by using a single fiber laser combined with nonlinear optical fibers to perform effective multimodal imaging. While these sources are useful for practical multimodal imaging, it is believed that for further improvements in CARS microscopy sensitivity, new excitation schemes are necessary. This has led to the design of a new, high power, extended cavity oscillator that should be capable of implementing new excitation schemes for CARS microscopy as well as other techniques. Our interest in multimodal imaging has led us to other areas of research as well. For example, a fiber-coupling scheme for signal collection in the forward direction is demonstrated that allows for fluorescence lifetime imaging without significant temporal distortion. Also highlighted is an imaging artifact that is unique to CARS microscopy that can alter image interpretation, especially when using multimodal imaging. By combining expertise in nonlinear optics, laser development, fiber optics, and microscopy, we have developed systems and techniques that will be of benefit for multimodal CARS microscopy. / Thesis (Ph.D, Physics, Engineering Physics and Astronomy) -- Queen's University, 2011-08-11 13:46:26.065
3

Investigating Hepatitis C Virus Interactions with Host Lipid Pathways that are Critical for Viral Propagation Using Small Molecule Inhibitors and Chemical Biology Methods

Lyn, Rodney January 2013 (has links)
Hepatitis C virus (HCV) is remarkably capable of efficiently hijacking host cell pathways including lipid metabolism in the liver in order to create pro-viral environments for pathogenesis. It is becoming increasingly clear that identifying small molecule inhibitors that target host factors exploited by the virus will expand available HCV treatment options. As such, a thorough understanding of host-virus interactions is critical to the development of alternative therapeutic strategies. Hepatic lipid droplets (LDs) are recruited by HCV to play essential roles in the viral lifecycle. The intracellular location of LDs is modified upon interacting with viral structural core protein. This enables formation of platforms that support viral particle assembly. Because these interactions are non-static, capturing its dynamic processes in order to better understand viral assembly can be achieved with label-free molecular imaging enhanced with live-cell capabilities. Chemical biology approaches that includes CARS microscopy employed in a multi-modal imaging system was used to probe interactions between HCV and host LDs. By successfully tracking LD trajectories, we identified core protein’s ability to alter LD speed and control for LD directionality. Using protein expression model systems that allowed for simultaneous tracking of core protein and LDs, our data revealed that mutations in the core protein region that vary in hydrophobicity and LD binding strengths, are factors that control for differential modulation of LD kinetics. Furthermore, we measured bidirectional LD travels runs and velocities, and observed critical properties by which core protein induces LD migration towards regions of viral particle assembly. Given that many steps in the HCV lifecycle are directly linked to host lipid metabolism, it is not surprising that disrupting lipid biosynthetic pathways would negatively affect viral replication. From this outlook, we explored small molecule inhibitors that targeted several lipid metabolic pathways to study its antiviral properties. Using fluorescent probes covalently labeled to viral RNA, we captured the visualization of disrupted replication complexes upon antagonizing nuclear hormone receptors that are linked to regulating lipid homeostasis. Correspondingly, biochemistry and molecular imaging techniques were also employed to identify novel antiviral mechanisms of small molecule inhibitors that target additional HCV-dependent lipid metabolic pathways.
4

Femtosecond CARS Microscopy to characterize lipid droplets in Engineered Adipose Tissue

Rashvand, Shahriar Cyrus January 2018 (has links)
Adipose tissue is a type of connective tissue whose purpose was once thought to be limited to fat storage but is now understood to be a key factor in the pathogenesis of different metabolic diseases, including obesity and type-II diabetes. Adipose tissue consists largely of adipocytes, cells responsible for fat and releasing energy in form of lipids. Different classes of fatty acids, such as saturated and unsaturated have different biological effects on adipocytes. Lipid droplets are the primary organelles in adipocytes that store these fatty acids in form of lipids, and the development of engineered adipose tissues would benefit from improved techniques for analysis of lipid droplet composition, distributions, and dynamics based as a function of fatty acid saturation. Conventional microscopic techniques, such as fluorescence microscopy, provides excellent selectivity of lipid-based structures inside adipose tissue cellular structures based on staining with compound dyes. However, fluorescence staining limits multiplex imaging, and requires time consuming steps in preparing the samples for imaging. Therefore, developing a label-free, high resolution imaging platform with sensitivity to lipid composition could enable analysis of structural and compositional differentiation of lipid droplets within adipocytes during differentiation could give valuable insights into the importance of lipid droplets role in metabolism. As an important step towards achieving this goal, a femtosecond based CARS microscopy imaging platform has been developed to perform in vitro, label-free, imaging of fatty acid composition within engineered adipose tissues. / Bioengineering
5

Nouveaux dispositifs pour l'application contrôlée d'impulsions électriques nanosecondes et pour la détection de leurs effets sur les cellules : Nouveaux résultats et hypothèses sur les paramètres contrôlant l'électroperméabilisation des cellules biologiques / New devices for the controlled application of nanosecond electrical pulses and the detection of their effects on cells : New findings and hypotheses on the parameters controlling the electropermeabilization of biological cells

Silve, Aude 23 November 2011 (has links)
La manipulation des membranes des cellules en suspension ou dans des tissus au moyen d’impulsions électriques constitue un sujet de recherche majeur au cœur du bio-électromagnétisme. A ce jour les impulsions de quelques microsecondes voire millisecondes ont été principalement étudiées. Elles n’affectent que la membrane plasmique des cellules. Les impulsions nanosecondes de fort niveau de champ (de l’ordre de quelques MV/m) ouvrent la voie vers la manipulation des organelles intra-cellulaires. En outre, elles constituent un nouvel outil pour l’étude des mécanismes de la perméabilisation. Les travaux de cette thèse ont été principalement consacrés aux effets des impulsions de 10 ns sur la membrane plasmique. Des protocoles expérimentaux permettant d’appliquer de façon reproductible et contrôlée les impulsions sur des objets vivants ont été définis. Des moyens de mesure (D-dot et B-dot) adaptés aux hautes tensions et hautes fréquences ont été développés et mis en œuvre, permettant un contrôle en temps réel des impulsions délivrées.Différentes approches ont permis de mettre en évidence la perméabilisation des cellules par des impulsions de 10 ns. Ces techniques regroupent notamment le suivi de bio-impédance dans les tissus et l’internalisation de molécules cytotoxiques non perméantes dans des cellules en suspension et in vivo sur des tumeurs. Les expériences conduites ont permis de mettre en évidence la plus grande efficacité des basses fréquences de répétition dans la perméabilisation d’un tissu végétal (la pomme de terre). De plus l’influence de la conductivité du milieu extracellulaire sur le niveau de perméabilisation a été investiguée. Ces expériences ont permis de mettre en évidence l’importance de la dynamique d’établissement et de relaxation de la différence de potentiel transmembranaire dans l’efficacité de la perméabilisation.Enfin un microscope CARS (Coherent Anti-stokes Raman Scattering) plein-champ a été développé. Sa conception a été pensée en vue de l’étude des effets des impulsions ultra-courtes sur le vivant à l’échelle moléculaire. A ce jour il permet d’obtenir des images de cellules en CARS en 3 ns. / New devices for the controlled application of nanosecond electrical pulses and the detection of their effects on cells. New findings and hypotheses on the parameters controlling the electropermeabilization of biological cells.Abstract:Manipulation of the membranes of cells in suspension or in tissues with electrical pulses is a major research topic in bio-electromagnetism. Until recently the effects of pulses of a few microseconds or milliseconds have mainly been studied. Such pulses only affect the cell plasma membrane. Pulses of a few nanoseconds with high field strength (of the order of a few MV /m) might lead to intracellular organelles manipulation. In addition, they represent a new tool to study the mechanisms of permeabilization.This thesis was mainly devoted to the effects of pulses of 10 ns on the plasma membrane. Experimental protocols to apply controlled and reproducible pulses on living objects have been defined. Measurement means (D-dot and B-dot) adapted to high voltages and high frequencies have been developed and implemented thus allowing for accurate and real-time monitoring of the pulses applied on the biological samples.Different approaches have been used to highlight the permeabilization of biological cells by pulses of 10 ns. The techniques used include the monitoring of bio-impedance in tissues and the internalization of non-permeant cytotoxic molecules in cells in suspension and in vivo in tumors. The conducted experiments allowed to demonstrate the high efficiency of low repetition rates in permeabilizing potato tissue. The influence of the conductivity of the extracellular medium on the efficiency of the permeabilization was also investigated. These experiments highlighted the important role played by the dynamic of the establishment and relaxation of the transmembrane potential difference.Finally a wide-field CARS microscope (Coherent Anti-Stokes Raman Scattering) was developed. It has been designed to study the effects of ultra-short pulses on biological cells at the molecular level. It already enables to obtain images of cells in 3 ns.
6

Raman Signal Enhancement and CARS Microscopy

Naji, Majid January 2014 (has links)
Raman biosensors are appealing for many biomedical applications, due to their accuracy and speed. In addition, Raman microscopy is a non-labeled imaging technique that offers chemical contrast based on Raman vibrational frequencies. However, the weak Raman signal represents a significant obstacle to using Raman in biological applications. The objective of my PhD research, presented in this thesis, is to enhance the Raman signal, thereby enabling it to be used in a wide variety of biomedical applications. More specifically, the research focuses on two different Raman signal enhancement techniques. The first is to improve the Raman signal using hollow-core photonic crystal fibers; this enhanced the Raman signal of ethanol 40 times. The second approach is by generating a coherent anti-Stokes Raman scattering (CARS) signal. We demonstrated CARS microscopy of myelin (lipid-rich) structures using a single femtosecond Ti:sapphire laser, and a photonic crystal fiber (PCF) with two closely lying zero dispersion wavelengths (ZDWs). Generating low noise supercontinuum (Stokes beam) out of two closely lying ZDW PCFs, enabled us to perform fast data acquisition (84 μs per pixel) CARS imaging using a homebuilt microscope. However, the application of this fiber is often limited to CARS imaging of molecular species with vibrations at wavenumbers ≥ 2000 cm−1 Raman shift. In addition, as it is not a polarization maintaining fiber, it cannot be used for polarization CARS microscopy. A polarization-maintaining PCF with two far-lying zero dispersion wavelengths offers important advantages for polarization CARS microscopy, and for CARS imaging in the fingerprint region. This PCF, though commercially available, has had limited use for CARS microscopy in the C-H bond region. The main problem is that the supercontinuum from this fiber is typically noisier than that from a standard PCF with two closely-lying zero dispersion wavelengths. To overcome this, we determined the optimum operating conditions for generating a low-noise supercontinuum out of a PCF with two far-lying zero dispersion wavelengths, in terms of the input parameters of the excitation pulse. We measured the relative intensity noise (RIN) of the Stokes and the corresponding CARS signal, as a function of the input laser parameters in this fiber. We demonstrated that the results of CARS imaging using this alternate fiber are comparable to those achieved using the standard fiber for input laser pulse conditions of low average power, narrow pulse width with a slightly positive chirp, and polarization direction parallel to the slow axis of the selected fiber. Finally, we demonstrated a novel fiber-delivered, portable, multimodal CARS exoscope, for minimally invasive in-vivo imaging of tissues. The device was based on a micro-electromechanical system-scanning mirror and miniaturized optics, and light delivery by photonic crystal fibre. A single Ti:sapphire femtosecond laser approach is used to produce CARS and two photon excitation fluorescent and second harmonic generation images of different samples using the new setup. The high resolution and distortion-free images achieved with various samples, particularly in the reverse direction (epi), successfully demonstrate proof of concept, and paves the way to minimally or non-invasive in vivo imaging. Moreover, combining this novel endoscope with a portable femtosecond fiber laser will accelerate delivering multimodal nonlinear imaging endoscopy/microscopy to clinical bed-side applications.
7

Suplementação oral de glicosaminoglicanos e expressão de pequenos proteoglicanos ricos em leucina após cistotomia em bexigas saudáveis versus parcialmente obstruídas.

Castro, Natália Caroline Nalesso de. January 2018 (has links)
Orientador: Juliany Gomes Quitzan / Resumo: A diminuição da complacência da bexiga está relacionada com modificações no equilíbrio dos componentes da matriz extracelular e na concentração das fibras de colágeno, acarretando em espessamento da parede vesical e fibrose. O objetivo do estudo é analisar a relação entre suplementação oral dos glicosaminogicanos (GAGs), distribuição de pequenos proteoglicanos ricos em leucina (SRLPs) e síntese de colágeno em bexigas saudáveis e fibrosadas por obstrução parcial submetidas a cistotomia. Foram utilizados 56 ratos da linhagem Wistar, fêmeas, divididos em cinco grupos experimentais- G1 (8) – controle, sem procedimento, G2 (12) – animais não suplementados, submetidos ao procedimento de obstrução vesical e posterior cistotomia, G3 (12) – animais suplementados e submetidos ao procedimento de obstrução vesical e posterior cistotomia, G4 (12) – animais não suplementados e submetidos ao procedimento de cistotomia e G5 (12) animais suplementados e submetidos ao procedimento de cistotomia. A suplementação de glicosaminoglicanos foi realizada a cada 24 horas por via oral durante 28 dias pós cistotomia, quando então os animais foram eutanasiados. O colágeno foi avaliado pela Microscopia Cars e biglican, decorina, lumican e fibromodulina pelo método de imunofluorescência. Para análise estatística foi utilizado o teste ANOVA e T-STUDENT, com nível de significância p <0,05. Os animais dos grupos G2 e 3 foram os que apresentaram diferença estatística na seguinte constante: peso bexiga final /p... (Resumo completo, clicar acesso eletrônico abaixo) / Mestre

Page generated in 0.0468 seconds