• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A 100-year retrospective and current carbon budget analysis for the Sooke Lake Watershed: Investigating the watershed-scale carbon implications of disturbance in the Capital Regional District’s water supply lands / One hundred-year retrospective and current carbon budget analysis for the Sooke Lake Watershed

Smiley, Byron 01 May 2015 (has links)
Northern forest ecosystems play an important role in global carbon (C) cycling and are considered to be a net C sink for atmospheric C (IPCC, 2007; Pan, et al., 2011). Reservoir creation is a common cause of deforestation and when coupled with persistent harvest activity that occurs in forest ecosystems, these disturbance events can significantly affect the C budget of a watershed. To understand the effects of these factors on carbon cycling at a landscape level, an examination of forest harvest and reservoir creation was carried out in the watershed of the Sooke Lake Reservoir, the primary water supply for the Greater Victoria area in British Columbia. Covering the period between 1910 and 2012, a detailed disturbance and forest cover dataset was generated for the Sooke Lake Watershed (SLW) and used as input into a spatially-explicit version of the Carbon Budget Model of the Canadian Forest Sector 3 (CBM-CFS3). The model was modified to include export of C out of the forest system in the form of dissolved organic C (DOC) into streams. The fraction of decaying C exported through this mechanism was tuned in the model using DOC measurements from three catchments within the SLW. Site-specific growth and yield curves were also generated for watershed forest stand types, in part, by using LiDAR-derived site indices. C transfers associated with disturbances were adjusted to reflect the disturbance types that occurred during the 100-year study period. Due to the removal of C resulting from wildfire, logging and residue burning, as well as deforestation disturbances, total ecosystem C stocks dropped from 700 metric tonnes of C per hectare (tC ha-1) in 1910 to their current (2012) level of ~550 tC ha-1 across the SLW. Assuming no change in management priorities and negligible effects of climate change, total ecosystem C stocks will not recover to 1910 levels until 2075. The cumulative effect of reservoir creation and expansion on the C budget resulted in 14 tC ha-1 less being sequestered (111,217 tC total) across the watershed by 2012. In contrast, sustained yield forestry within the Capital Regional District’s tenure accounts for a 93 tC ha-1 decrease by 2012, representing an impact six times greater than deforestation associated with reservoir creation. The proportionally greater impact of forestry activity is partly due to current C accounting rules (Intergovernmental Panel on Climate Change) that treats C removed from the forest in the form of Harvested Wood Products as C immediately released to the atmosphere as carbon dioxide. Cumulative DOC export to the Sooke Lake reservoir was ~30,660 tC by 2012, representing a substantial pathway for C leaving the forest ecosystem. However, more research is required to understand what fraction of terrestrially-derived DOC is sequestered long term in lake sediment. The results of this study will assist forest manager decision making on the appropriate management response to future forest disturbance patterns that could result from climate change and to improve climate change mitigation efforts. / Graduate / 0478 / 0425 / 0368 / byrons@uvic.ca
2

Evaluating the Greenhouse Gas Mitigation Potential and Cost-competitiveness of Forest Bioenergy Systems in Ontario

Ralevic, Peter 09 August 2013 (has links)
Recent literature has recommended that life cycle assessments (LCA) of forest bioenergy supply chains consider the impact of biomass harvest on ecosystem carbon stocks as well as the net emissions arising from combustion of various forms of biofuels compared with reference fossil fuel systems. The present study evaluated the magnitude and temporal variation of ecosystem C stock changes resulting from harvest of roadside residues and unutilized whole trees for bioenergy. The Carbon Budget Model (CBM-CFS3) was applied to the Gordon Cosens Forest, in northeastern Ontario, along with the Biomass Opportunity Supply Model (BiOS-Map), for cost analysis of different types of biomass comminution. Natural gas (NG) steam and electricity, grid electricity, and coal electricity reference systems were analyzed for a pulp and paper mill. The findings showed that the forested landscape becomes a net sink for carbon following the 20th year of roadside residue harvest, compared to whole-tree harvest, where the forested landscape remained a net source of carbon over the entire 100 year rotation. The cumulative ecosystem carbon loss from whole-tree harvest was 11 times greater compared to roadside residue harvest. BiOS-Map analysis suggested that due to technical and operational limits, between 55%-59% and 16%-24% of aboveground biomass was not recovered under roadside residue and whole-tree harvest respectively. The cost of delivering roadside residues was estimated at $52.32/odt–$57.45/odt, and for whole trees $92.63/odt–$97.44/odt. The Life Cycle Assessment (LCA) analysis showed break-even points of 25, 33 and 6 years for roadside residues displacing NG steam, NG electricity, and coal, respectively. No GHG reduction was achieved when forest biomass was used to displace grid electricity that is generated in Ontario. Whole-tree bioenergy resulted in no GHG reduction for NG displacement, and a break-even point of 70-86 years for coal. A net GHG reduction of 67% and 16% was realized when roadside residues and whole trees were used to displace coal, compared to 45% and 38% when roadside residues were used to displace NG steam and NG electricity, respectively. Therefore, it is recommended that bioenergy deployment strategies focus on the utilization of roadside residues, if the main goal is GHG mitigation.
3

Evaluating the Greenhouse Gas Mitigation Potential and Cost-competitiveness of Forest Bioenergy Systems in Ontario

Ralevic, Peter 09 August 2013 (has links)
Recent literature has recommended that life cycle assessments (LCA) of forest bioenergy supply chains consider the impact of biomass harvest on ecosystem carbon stocks as well as the net emissions arising from combustion of various forms of biofuels compared with reference fossil fuel systems. The present study evaluated the magnitude and temporal variation of ecosystem C stock changes resulting from harvest of roadside residues and unutilized whole trees for bioenergy. The Carbon Budget Model (CBM-CFS3) was applied to the Gordon Cosens Forest, in northeastern Ontario, along with the Biomass Opportunity Supply Model (BiOS-Map), for cost analysis of different types of biomass comminution. Natural gas (NG) steam and electricity, grid electricity, and coal electricity reference systems were analyzed for a pulp and paper mill. The findings showed that the forested landscape becomes a net sink for carbon following the 20th year of roadside residue harvest, compared to whole-tree harvest, where the forested landscape remained a net source of carbon over the entire 100 year rotation. The cumulative ecosystem carbon loss from whole-tree harvest was 11 times greater compared to roadside residue harvest. BiOS-Map analysis suggested that due to technical and operational limits, between 55%-59% and 16%-24% of aboveground biomass was not recovered under roadside residue and whole-tree harvest respectively. The cost of delivering roadside residues was estimated at $52.32/odt–$57.45/odt, and for whole trees $92.63/odt–$97.44/odt. The Life Cycle Assessment (LCA) analysis showed break-even points of 25, 33 and 6 years for roadside residues displacing NG steam, NG electricity, and coal, respectively. No GHG reduction was achieved when forest biomass was used to displace grid electricity that is generated in Ontario. Whole-tree bioenergy resulted in no GHG reduction for NG displacement, and a break-even point of 70-86 years for coal. A net GHG reduction of 67% and 16% was realized when roadside residues and whole trees were used to displace coal, compared to 45% and 38% when roadside residues were used to displace NG steam and NG electricity, respectively. Therefore, it is recommended that bioenergy deployment strategies focus on the utilization of roadside residues, if the main goal is GHG mitigation.

Page generated in 0.0226 seconds