Spelling suggestions: "subject:"2022"" "subject:"222""
1 |
Verwendung von Gene-Targeting-Techniken zur Etablierung neuer Mauslinien mit Mutationen in B-Zell-SignalwegenKlein, Jörg. January 2005 (has links) (PDF)
Würzburg, Univ., Diss., 2005.
|
2 |
Verwendung von Gene-Targeting-Techniken zur Etablierung neuer Mauslinien mit Mutationen in B-Zell-Signalwegen / Usage of Gene Targeting techniques for establishing new mouse lines with mutations in B-cell signalingKlein, Jörg January 2005 (has links) (PDF)
Das Hauptthema der hier vorliegenden Arbeit befaßt sich mit dem B-Zell spezifischen Oberflächenprotein CD22, einem Mitglied der Siglec (Sialinsäure bindende Igähnliche Lektine) Proteinfamilie. Dieses Transmembranprotein besitzt sieben extrazelluläre Immunoglobulin-ähnliche Domänen und kann über die äußerste V-set Domäne seine Liganden: α2,6 verknüpfte Sialinsäuren binden. CD22 hat eine Transmembrandomäne und eine cytoplasmatische Domäne mit sechs potentiellen Tyrosin Phosphorylierungsstellen, von denen drei eine ITIM-Sequenz (engl. immunoreceptor tyrosine-based inhibitory motif) aufweisen. CD22 defiziente Mäuse zeigten eindeutig, daß das Siglec CD22 ein negativer Regulator des BCR-Signals ist. Durch BCR-Kreuzvernetzung wird CD22 tyrosinphosphoryliert, die inhibitorische Tyrosinphosphatase SHP-1 gebunden, aktiviert, und ist nun in der Lage das BCR Ca2+ Signal zu inhibieren. Um die Rolle der CD22Ligandenbindungsdomäne, in vivo zu untersuchen, sollte in dieser Arbeit eine CD22 knock -in Maus erzeugt werden (CD22R130E Maus), in der die Ligandenbindungsdomäne von CD22 durch eine Punktmutation funktionell ausgeschaltet ist. In der hieraus resultierenden Mauslinie sollte dann die BZellentwicklung, Signaltransduktion und der Immunstatus analysiert werden. Der Vergleich des Phänotyps der CD22R130E Maus und der CD22 defizienten Maus sollte dann zeigen, wie die Adhäsions- und Signalleitungseigenschaften von CD22 zusammenhängen. Der „Targeting“ Vektor für die „Gene Targeting“ Experimente wurde von der Arbeitsgruppe Dr. Anton van der Merwe (von Christina Piperi) angefertigt. Ursprünglich wurde ein „Targeting“ Vektor aus genomischer C57BL/6-DNA verwendet, um den genetischen Hintergrund der CD22-defizienten Maus beizubehalten. Dieser Vektor wurde von mir für ES-Zell Transfektionen in der C57Bl/6 ES-Zellline verwendet. Aus den Gene Targeting Experimenten mit der C57Bl/6-III ES-Zelllinie konnten zwei ES-Zellklone isoliert werden, die eine korrekte homologe Integration des Targetvektors trugen. Aus einem Blastozysteninjektions- Experiment mit einem Cre-deletierten C57BL/6-III Subklon wurden sechs hochchimäre Mäuse erhalten, mit denen allerdings keine Keimbahntransmission erzielt werden konnte. Nach Problemen mit Keimbahntransmission von Klonen aus der C57BL/6-III ESZelllinie, wurden noch die BALB/c und die E14Tg2a ES-Zelllinie für neue Gene Targeting Experimente verwendet. Die Experimente mit der BALB/c ES-Zelllinie ergaben keine ES-Zellklone mit korrekter homologer Integration, dies beruhte wahrscheinlich auf dem nicht isogenen Hintergrund. Alle folgenden Experimente mit der E14Tg2a ES-Zelllinie (genetischer Hintergrund: 129/ola) wurden mit dem verlängerten R130E-Targetvektor (Targetvektor 2), der mit 129/ola DNA um 2,3 Kb in 5’-Richtung verlängert wurde, um den isogenetischen Anteil des Targetvektors zu erhöhen, durchgeführt. Aus diesen Experimenten resultierten wiederum zwei ESZellklone, deren korrekte homologen Rekombination durch Southern Blot bestätigt werden konnten. Bei den darauffolgenden Blastozysten-Injektionsexperimenten mit diesen zwei E14Tg2a Klonen konnten fünf chimäre Tiere gewonnen werden. Ein 80 %ig chimäres Männchen erzeugte eine hohe Anzahl von Nachkommen mit Keimbahntransmission. Bei der Analyse dieser Tiere trat das Resultat zutage, daß alle diese Tiere mit Keimbahntransmission einen wildtypischen Genotyp besaßen. Ein weiteres Mitglied der Siglecproteinfamilie, das murine SiglecG (ein Ortholog zu humanem Siglec10), wurde in dieser Arbeit untersucht. In Zusammenarbeit mit dem Labor von Dr. Paul Crocker sollte eine SiglecG knock out Maus hergestellt werden. Die Strategie für die Gene Targeting Experimente für einen SiglecG knock out basierten auf der Verwendung der BalbI ES-Zelllinie (aus BALB/c Mäusen), da hiermit sehr gute Erfahrungen vorlagen, was die Stabilität ihrer Pluripotenz und des Keimbahntransmissionspotenzials angeht. Daher wurde im Labor von Paul Crocker (von Sheena Kerr) ein Kontroll- und ein Targetvektor kloniert, mit dem große Teile der ersten und zweiten Ig-Domäne von SiglecG ausgeschaltet werden sollte. Mit diesem Vektor führte ich mehrere ES-Zell Transfektionsexperimente durch. Innerhalb der Zeitspanne meiner Doktorarbeit konnten keine ES-Zellklone mit einem korrekten homologen Integrationsereignis gewonnen werden. Mittels der ursprünglichen Strategie konnte die mir nachfolgende Doktorandin jedoch ES-Zell Klone isolieren, nach Blastozysteninjektion Keimbahntransmission erzielen und somit eine SiglecGdefiziente Maus generieren. Eine andere Zusammenarbeit kam mit Dr. Burkhard Kneitz (Physiologisches Chemie I, Biozentrum, Universität Würzburg) zustande. Seine Intention war es, die Rolle des TGF-β Signalmediators SMAD2 auf B-Zellebene näher zu untersuchen. Von Erwin Böttinger bekamen wir eine Mauslinie, in der das Smad2-Gen gefloxt ist, die mit der CD19-Cre Maus gekreuzt wurde. So wurde eine B-Zell spezifische SMAD2 knock out Maus (bSmad2-/-) erzeugt. Meine Aufgabe bestand darin, die B-Zellkompartmente und die Immunantworten der B-Zell spezifischen Smad2-defizienten Maus zu analysieren. Faßt man alle gewonnenen Daten aus den hier generierten B-Zell spezifischen Smad2 knock out Tieren zusammen, so kann man zu dem klaren Ergebnis kommen, daß der TGF-β Signalmediator Smad2 eine entscheidende Rolle bei der Weiterleitung von TGF-β Signalen in das Zellinnere von B-Zellen spielt. Hierbei zeigten sich klare Veränderungen, im Vergleich zu Kontrolltieren, eine Erhöhung der Zellzahl in den Peyerschen Plaques (PP), und der B1-Zellen im Peritoneum. Die IgA-Immunantwort war in bSmad-/- Tieren stark erniedrigt. Der für TGF-β beschriebene Effekt der Proliferationshemmung von aktivierten B-Zellen war bei aktivierten B-Zellen der bSmad2-/- Mäuse hingegen nicht beeinträchtigt. / The main topic of this thesis dealt with the B cell-specific transmembrane protein CD22, a member of the Siglec (Sialic-acid binding Ig-like lectin) protein family. This transmembrane protein posseses seven extracellular domains and is capable to bind α2,6 sialic acids via its most outer V-set domain. Furthermore there are one transmembrane domain and six potential tyrosine-based phosphorylation motifs, three of which match ITIM (immunoreceptor tyrosine-based inhibitory motif) consensus sequences. CD22 deficient mice clearly showed that the Siglec CD22 is a negativ modulator of BCR signalling. BCR engagement causes tyrosine phosphorylation of CD22, now the inhibitory tyrosine phosphatase SHP-1 is able to bind, is then getting activated and is thus inhibiting the BCR Ca2+ signal. To elucidate the function of the CD22 adhesion domain in vivo, especially concerning the connection with CD22 signalling, one main topic of this work was to generate a CD22 knock in mouse (CD22R130E), in order to functionally eliminate the CD22 adhesion domain through a point mutation. The resulting new mouse line should give the opportunity to investigate B-cell development, signal transduction and the immune status ot the CD22R130E mouse. The comparison between the phenotypes of the CD22R130E mouse and the CD22 deficient mouse should resolve the interplay of adhesion and signalling of CD22. The cloning of the targeting vector for the gene targeting experiments was done in the laboratory of Dr. Anton van der Merwe (by Christina Piperi). Basically, the idea was to keep the C57BL/6 genetic background, which was already used to generate the CD22 deficient mouse by Dr. Lars Nitschke (Nitschke et al. 1997). This vector was used by me for the ES cell transfection experiments with the C57Bl/6-III ES cell line. Finally, two ES-cell clones could be identified from gene targeting experiments with the C57BL/6 ES-cell line, which carried a correct homologous integrated target vector. With one Cre-deleted C57BL/6 subclone it was possible to generate six chimaeric animals from one injection experiment, although none of these animals could give rise to germline transmission. Since occurence of crucial problems with the germline transmission of C57BL/6-III ES-cell clones, the BALB/c and E14Tg2a ES-cell lines were used for new gene targeting experiments. With the following gene targeting experiments using the BALB/c ES-cell line no homologous recombinants were obtained. This was probably due to the non-isogenic background. All following experiments performed with the E14Tg2a ES-cell line (genetic background: 129/ola) were carried out with the elongated R130E-targeting vector (targeting vector 2). This vector was created by using a genomic 129/ola template, in order to gain a new isogenetic 2.3 kb 5’- fragment. These experiments gave rise to two ES-cell clones with a correct homologous recombination event confirmed by southern blot. It was now possible to generate five chimaeric animals out of three injection experiments with these two EScell clones. One male animal, with 80 % chimaerism, produced offspring with germline transmission. The analysis of these animals with germline transmission showed that all of them possessed a wildtype like genotype. This thesis dealt with a further member of the Siglec protein family, the murine SiglecG (an ortholog to human Siglec10). In collaboration with the laboratory of Dr. Paul Crocker a SiglecG knock out mouse was to be generated. The strategy to do the gene targeting experiments was based on the usage of the BalbI ES-cell line (from BALB/c mice), since it possesses well known stability concerning pluripotential and germline transmission potential. In the laboratory of Paul Crocker (by Sheena Kerr) a control and target vector was cloned, which should eliminate a large part of the first and second Ig-domain of SiglecG. I performed different ES-cell transfection experiments with this vector. Within the timecourse of my work it was not possible to gain any ES-cell clones with correct homologous integration events. Later on ES-cell clones, germline transmission and generation of the SiglecG deficient mouse was achieved with the original strategy by the following Phd student. Another collaboration was evolved by Dr. Burkhard Kneitz (Department of Physiological Chemistry I, Würzburg). His intention was to investigate the meaning of the TGF-β signalmediator SMAD2 in a B-cell specific manner. From Erwin Böttinger we received a mouse line with a floxed Smad2 gene, which was crossed with a CD19-Cre mouse line (Rickert et al. 1997). Thus a B-cell specific SMAD2 knock out mouse (bSmad2-/-) was generated. I had to analyse the B-cell compartments and the immune responses of the B-cell specific SMAD2 knock out mouse. Taking together all data gained with the newly generated B-cell specific SMAD2 knock out mouse showed that the signalmediator SMAD2 is a crucial downstream component of TGF-β signalling in B-cell biology. The crucial differences of bSmad2-/- animals in comparison to control animals were given in an increase of cells of Payers Patches (PP) and B1 cells of peritoneal lavages. The IgA immune response was strongly reduced in bSmad2-/- animals. The well known effect of TGF-β concerning inhibition of proliferation with activated B-cells (Kehrl et al. 1986; 1989; 1991) was not impaired with activated B-cells of bSmad2-/- animals.
|
3 |
Der inhibitorische Einfluss von CD22 auf das B-Zellrezeptorsignal nach Stimulation der B-Zelle / The Inhibitory Influence of CD22 on the B-cell Receptor Signal upon Stimulation of the B-cellGerlach, Judith January 2003 (has links) (PDF)
CD22 ist ein B-zellspezifisches Transmembranprotein der Immunglobulin (Ig)-Superfamilie. Es übernimmt zwei unterschiedliche Aufgaben. Zum einen hat CD22 eine inhibitorische Wirkung auf das BZR-Signal. Nach BZR-Ligation lagert sich die Tyrosin-Phosphatase SHP-1 an die cytoplasmatische Domäne von CD22 an, wodurch SHP-1 aktiviert wird. Durch die dephosphorylierende Aktivität der Phosphatase moduliert sie das BZR-Signal. Zum anderen ist CD22 ein Adhäsionsmolekül, das in die Gruppe der Siglecs (Sialic acid-binding Ig-like lectin) gehört. Die N-terminale Ig-Domäne von CD22 weist die Bindungseigenschaften eines Lectins auf und bindet spezifisch 2,6-gekoppelte Sialinsäure. Das Ziel der vorliegenden Doktorarbeit war es, die inhibitorische Wirkung von CD22 auf das BZR-Signal molekular zu definieren. Daher wurde das Substrat der an CD22 rekrutierten und aktivierten Phosphatase SHP-1 in vergleichenden Analysen von CD22-defizienten und Kontroll-B-Zellen nach BZR-Stimulation gesucht. Wir konnten zeigen, dass in CD22-defizienten B-Zellen nach BZR-Stimulation das Adaptermolekül SLP-65, auch BLNK oder BASH genannt, früher und stärker Tyrosin-phosphoryliert vorliegt, als in Kontroll-B-Zellen. Transfektionsexperimente mit der CD22-defizienten Plasmazytom-Zelllinie J558Lm3 wurden begonnen, um den molekularen Zusammenhang zwischen CD22, SHP-1 und SLP-65/BLNK zu bestätigen. Das in J558Lm3 Zellen ektopisch exprimierte CD22 wurde Tyrosin-phosphoryliert, und SHP-1 konnte mit CD22 co-präzipitiert werden. Jedoch war in den CD22-Transfektanten keine Reduktion der Tyrosin-Phosphorylierung von SLP-65/BLNK nach BZR-Stimulation im Vergleich zu untransfizierten Zellen nachweisbar. Da in unabhängigen Experimenten die Liganden-Bindung von CD22 als Voraussetzung für die inhibitorische Wirkung von CD22 deutlich wurde, etablierten wir 2,6 Sialinsäure- und CD22-positive J558Lm3 Doppeltransfektanten. Auf diesen konnte die cis-Maskierung von CD22 nachgewiesen werden. In Stimulationsexperimenten der Doppeltransfektanten wurde die reduzierte Tyrosin-Phosphorylierung von SLP-65/BLNK in Abhängigkeit von CD22 in der Mehrzahl der Klone bestätigt. Allerdings mussten die Resultate in Frage gestellt werden, als in den meisten Klonen einer Kontrolltransfektion ebenfalls eine Reduktion der Tyrosin-Phosphorylierung von SLP-65/BLNK festgestellt wurde. Um den Einfluss von CD22 und SLP-65 auf das BZR-Signal zu klären, wurden CD22- und SLP-65-defiziente Mäuse gekreuzt. Durch die zusätzliche Deletion von CD22 in SLP-65-/- Mäusen konnte das Ca2+-Signal nach BZR-Stimulation wieder hergestellt werden. Jedoch zeigte die weitere Analyse der doppel-defizienten Mäuse, dass in der Regel der Phänotyp der SLP-65-defizienten Mäuse dominiert. Diese Ergebnisse verdeutlichten, dass das Adaptermolekül SLP-65/BLNK zwar ein Substrat des CD22/SHP-1 Signalweges ist, aber keine essentielle Rolle in der inhibitorischen Wirkung von CD22 übernimmt. Weiterhin wurde der Einfluss der Ligandenbindung von CD22 auf dessen intrazelluläre, inhibitorische Wirkung auf das BZR-Signal untersucht. Ein synthetisches Sialoside stand zur Verfügung, das hochspezifisch die Interaktion von CD22 mit dessen Liganden stört. Wurden die Zellen einer humanen B-Zelllinie in Gegenwart des Sialosids über den BZR stimuliert, konnte ein erhöhtes Ca2+-Signal gemessen werden. Dieses Resultat erinnerte an die stärkere Ca2+-Mobilisierung in CD22-defizienten B-Zellen. Entsprechend war die Tyrosin-Phosphorylierung von CD22 nach Vorbehandlung mit dem Sialosid in den humanen B-Zellen verringert, und weniger SHP-1 konnte mit CD22 co-präzipitiert werden. Mit diesen Ergebnissen wurde deutlich, dass die Adhäsionsdomäne von CD22 einen direkten, positiven Einfluss auf die intrazelluläre, inhibitorische Domäne von CD22 hat. Als Nebenprojekt wurde die Rolle von CD22 in knock-out Mäusen des transkriptionellen Co-Aktivators BOB.1/OBF.1 untersucht. Ein Entwicklungsblock im transitionalen B-Zellstadium im Knochenmark der BOB.1/OBF.1-defizienten Mäuse verursacht eine deutliche Reduktion reifer B-Zellen in der Milz. Die Analyse des Knochenmarks der BOB.1/OBF.1-defizienten Mäuse zeigte, dass ausschließlich die Expression von CD22 auf den B-Vorläufer Zellen erhöht war. Nach zusätzlicher Deletion von CD22 in BOB.1/OBF.1-/- Mäusen war nach BZR-Stimulation ein deutliches Ca2+-Signal in den doppel-defizienten B-Zellen messbar. Dieses könnte die normalisierte Anzahl transitionaler B-Zellen im Knochenmark und die gestiegene Anzahl reifer B-Zellen in der Milz der doppel-defizienten Mäuse bewirken. Allerdings waren die doppel-defizienten Mäuse, entsprechend den BOB.1/OBF.1-/- Mäusen, nicht in der Lage, eine humorale Immunantwort einzuleiten oder Keimzentren zu bilden. Die Proliferation von CD22-defizienten B-Zellen nach LPS-Stimulation verlief unabhängig von der An- oder Abwesenheit von BOB.1/OBF.1. Mit den Untersuchungen konnten wir zeigen, dass die Differenzierungsschwierigkeiten der BOB.1/OBF.1-defizienten B-Zellen vom BZR-Signal abhängen. Allerdings muss das Ausbleiben der Keimzentrenbildung auf einen anderen Mechanismus zurückgeführt werden. / CD22 is a B cell-specific transmembran protein of the Immunoglobulin (Ig) superfamily, which has two distinct functions. On the one hand, CD22 acts as a negative regulator of the BCR-signal. Upon BCR-ligation the tyrosine phosphatase SHP-1 associates with the cytoplasmatic tail of CD22 leading to the activation of SHP-1. The activated tyrosine phosphatase dephosphorylates signaling molecules within the BCR-signaling cascade, thereby inhibiting the BCR-signal. On the other hand, CD22 is an adhesion molecule belonging to the Siglec family (Sialic acid-binding Ig-like lectin). The N-terminal Ig-domain confers lectin function by specifically binding to 2,6-linked sialic acid. The main focus of this thesis was to molecularly define the inhibitory role of CD22 on the BCR-signal. Therefore, we looked for possible substrates of the tyrosine phosphatase SHP-1 by comparing the tyrosine phosphorylation level of proximal signaling molecules upon BCR-stimulation in CD22-deficient and control-B-cells. The adaptor protein SLP-65, also called BLNK or BASH, was earlier and stronger tyrosine-phosphorylated in CD22-deficient B-cells, compared to control-B-cells upon BCR-stimulation. Reconstitution experiments were started with the CD22-deficient plasmacytoma cell-line J558Lm3 to demonstrate the molecular correlation between CD22, SHP-1, and SLP-65/BLNK. Ectopically expressed CD22 was tyrosine-phosphorylated in transfected J558Lm3 cells and SHP-1 could be co-precipitated with CD22. However, the tyrosine-phosphorylation level of SLP-65/BLNK was unaffected or even increased in CD22-positive J558Lm3 transfectants upon stimulation. In the meantime we were able to show that the adhesion domain of CD22 has a direct influence on the inhibitory role of CD22. Therefore, plasmacytoma cells were established stably expressing 2,6 sialic acid and CD22. On those cis-masking of CD22 could be detected. The tyrosine-phosphorylation level of the adaptor molecule SLP-65/BLNK was decreased in most of the double-transfected J558Lm3 clones depending on the expression of CD22. But the obtained results had to be questioned when the tyrosine-phosphorylation of SLP-65/BLNK was also decreased in most of the clones of a control-transfection. To further analyze the mechanism of BCR-signal regulation by CD22 and SLP-65, CD22- and SLP-65-deficient mice were crossed. The additional deletion of CD22 in SLP-65-/- mice restored the Ca2+-signal in double-deficient B-cells upon BCR-stimulation. Further analysis of SLP-65xCD22-double-deficient mice revealed that the phenotype of the SLP-65-/- mice was dominant in most of the explored aspects. Therefore, we concluded that the adaptor protein SLP-65/BLNK is a substrate of the CD22/SHP-1 pathway but not crucial for mediating the inhibitory function of CD22. So far it was not known whether the ligand-binding of CD22 influences its intracellular signaling domain. To investigate this question we used a synthetic sialoside, which specifically binds to the lectin domain of CD22 and thereby interferes with the ligand-binding. When cells of a human B cell-line were stimulated with anti-IgM in the presence of this sialoside, a higher Ca2+-signal was observed, similar to the one measured in CD22-deficient B-cells. Accordingly, a lower tyrosine-phosphorylation of CD22 and less SHP-1 recruitment was demonstrated in the presence of this sialoside in those human B-cells. Thus, by interfering with the ligand binding of CD22 on the B-cell surface, we have shown that the lectin domain of CD22 has a direct, positive influence on its intracellular inhibitory domain. As a side project we investigated the role of CD22 in mice lacking the transcriptional co-activator BOB.1/OBF.1. A developmental block at the transitional B cell stage in the bone marrow of BOB.1/OBF.1-deficient mice causes a reduced number of splenic B cells. By analyzing the bone marrow of BOB.1/OBF.1-/- mice, we found that the expression of CD22 is selectively increased on B-lineage cells. Furthermore, the Ca2+-signal in BOB.1/OBF.1-deficient B-cells was restored upon BCR-stimulation, when CD22 was additionally deleted. The increased Ca2+-signal could cause the normal number of transitional B cells in the bone marrow and the increased number of mature B-cells in the spleen of BOB.1/OBF.1xCD22-double-deficient mice. Nevertheless, double-deficient animals were unable to mount humoral immune response and to form germinal centers as has been described for BOB.1/OBF.1-deficient mice. Finally, CD22-deficient B-cells proliferate independently of BOB.1/OBF.1 upon stimulation with LPS. These studies suggest that the differentiation defect of B-cells observed in BOB.1/OBF.1-/- mice is BCR-signal dependent. However, the impairment of BOB.1/OBF.1-/- B-cells to form germinal centers is caused by a different mechanism.
|
4 |
Der inhibitorische Einfluss von CD22 auf das B-Zellrezeptor-Signal nach Stimulation der B-ZelleGerlach, Judith. January 2003 (has links) (PDF)
Würzburg, Univ., Diss., 2003.
|
5 |
Generierung von chimären Mäusen mit Mutationen in der Signalleitungs-Domäne von CD22 und Untersuchungen zur Funktion von CD22 in Knockout-Mäusen / Generation of Chimaeric mice with mutations in the signaling domain of CD22 and analysis of the function of CD22 in knockout miceDanzer, Claus-Peter January 2002 (has links) (PDF)
Gegenstand dieser Arbeit ist die Untersuchung von Aspekten der Funktion von CD22, einem B-Zell spezifischen Transmembran-Rezeptor der Siglec-Familie (Sialinsäure-bindende Immunglobulin-ähnliche Lectine). Mit der äußersten der 7 extrazellulären Ig-ähnlichen Domänen kann CD22 spezifisch mit a2,6-Sialinsäure interagieren. In der cytoplasmatischen Domäne von CD22 befinden sich 6 konservierte Tyrosine, 3 davon in ITIMs (Immunrezeptor tyrosinhaltige inhibitorischen Motiven). Nach Kreuzvernetzung des B-Zell Rezeptors wird CD22 tyrosinphosphoryliert. Die cytosolische Tyrosin-Phosphatase SHP-1 bindet in der Folge an die phosphorylierten ITIMs, wird aktiviert, und inhibiert das BCR Ca2+-Signal. Gleichzeitig binden jedoch auch positive Modulatoren des BCR-Signals (Lyn, Syk, PLCg PI3K, und Grb-2) an CD22, deren Rolle im Zusammenhang mit CD22 bislang ungeklärt ist. 1. In einem Hauptteil der Arbeit sollten zwei Knockin Mausmodelle generiert werden. Das eine Mausmodell (CD22-ITIM-KO) sollte zerstörte ITIM-Motive enthalten. Bei dem anderen (CD22-Tailless) sollte die gesamte cytoplasmatische Domäne von CD22 fehlen. Beide Modelle sollten der Untersuchung der Rolle der an CD22 bindenden positiven Modulatoren des BCR-Signals, und des Zusammenhangs zwischen Signaltransduktion und Ligandenbindung in vivo dienen. Die Klonierung der Targeting-Vektoren für CD22-ITIM-KO (pCD22-ITIM-KO) und CD22-Tailless (pCD22-Tailless) wurde abgeschlossen. Mit Hilfe ebenfalls klonierter Kontrollvektoren wurden PCRs zur Identifizierung homolog rekombinanter ES-Zell Klone etabliert. Für beide Targeting-Konstrukte wurden nach Transfektion von C57BL/6 ES-Zellen homolog rekombinante Klone erhalten, und mittels Southern Blot und Sequenzierung der eingeführten Mutationen vollständig charakterisiert. Nach Cre/lox-vermittelter Deletion der Selektionskassette des Targeting-Konstrukts folgte Injektion voll charakterisierter CD22-ITIM-KO Klone in BALB/c-Blastozysten. Es wurden 5 chimäre Tiere erhalten, von denen keines die Mutationen durch die Keimbahn weitergab. Transfektionen der C57BL/6 Targeting-Konstrukte in anderen, nicht-isogenen ES-Zell Linien ergaben keine homologen Rekombinanten. Das Auffinden der genomischen Sequenz von CD22 in einer Internet-Datenbank ermöglichte die Verlängerung von pCD22-ITIM-KO um ca. 4 kb mit 129/ola-DNA. Eine Transfektion dieses neuen Konstruktes in eine 129/ola ES-Zelllinie ergab keine homologen Rekombinanten. Jedoch öffnet die nun bekannte genomische CD22-Sequenz den Weg zu einfacher Neukonstruktion von pCD22-ITIM-KO mit 129/ola-DNA, oder zu einer Veränderung und Verbesserung der vorhandenen C57BL/6-Vektoren. 2. Zur Untersuchung der Auswirkung der zerstörten ITIMs auf Tyrosinphosphorylierung und SHP-1 Assoziation von CD22 in vitro in einer Zelllinie wurde ein CD22-ITIM-KO-Expressionsvektor konstruiert, und Sialyltransferase/CD22-ITIM-KO Doppeltransfektanten der Plasmozytom-Zelllinie J558L gewonnen. CD22-ITIM-KO wurde nach BCR-Stimulation nicht tyrosinphosphoryliert, SHP-1 konnte entsprechend nicht mit CD22-ITIM-KO assoziieren. Die Ergebnisse zeigen die Funktionalität des CD22-ITIM-KO Konstrukts hinsichtlich ITIM-Phosphorylierung und SHP-1 Bindung. Weiterhin zeigten die Ergebnisse, daß die ITIM-Tyrosine wichtig für die Phosphorylierung der nicht-ITIM-Tyrosine sind. 3. Interaktion von CD22 mit a2,6-Sialinsäure auf der selben Zelloberfläche (in Cis) spielt eine wichtige Rolle bei der Zell-Zell-Interaktion und bei der intrazellulären Signaltransduktion. In dieser Arbeit wurden erstmals mittels Durchflußcytometrie B-Zellen mit CD22, dessen Liganden-Bindungsstelle nicht durch endogene a2,6-Sialinsäure besetzt ist (demaskiertes CD22), identifiziert. Ca. 10,5% aller B220+ Milzzellen von Wildtyp-Mäusen, aber nur ca. 4,5% der B220+ Milzzellen aus CD22-/- Mäusen waren in der Lage, exogene a2,6-Sialinsäure zu binden. Dieser Effekt ist zum Großteil auf CD22 zurückzuführen. Genauere FACS-Analyse zeigte, daß Zellen mit demaskiertem CD22 in der Fraktion der Transitionalen B-Zellen Typ 2 (T2-Zellen) angereichert sind, und Zeichen von Aktivierung (B7.2, CD25, CD69) zeigen. In Übereinstimmung damit führte in vitro Aktivierung von B-Zellen mit LPS oder IL4 zu CD22-abhängiger Demaskierung. 4. FACS-Färbungen zeigten, daß das Marginalzonen (MZ) B-Zell Kompartiment in CD22-/- Mäusen um ca. 70-80% gegenüber wt-Mäusen verkleinert ist. In Bestätigung früherer Arbeiten war die Immunantwort gegen i.p.-injizierte Thymusunabhängige Antigene Typ 2 (TI2-Antigene) in CD22-/- Mäusen 2-fach reduziert. Die Antwort war jedoch signifikant stärker reduziert (3-4-fach), wenn die gleiche Antigen-Menge i.v.-injiziert wurde, eine Situation, in der bevorzugt die MZ B-Zellen der Milz in Kontakt mit im Blutstrom transportierten Antigenen kommen. Es ist wahrscheinlich, daß die bekannte Defizienz in TI2-Immunantworten in CD22-/- Mäusen auf die verringerte MZ B-Zell Anzahl zurückzuführen ist. / Aim of this thesis was to investigate aspects of the function of CD22, a B-cell specific member of the Siglec-family (sialic acid binding immunoglobulin–like lectins). CD22 can specifically bind a2,6-sialic acid with the outermost of its 7 extracellular Ig-domains. There are 6 conserved tyrosine residues in the cytoplasmic domain, 3 of which lie within ITIMs (immunoreceptor tyrosine-based inhibitory motifs). Following BCR engagement, CD22 becomes tyrosine-phosphorylated. Consecutively, the cytosolic tyrosin-phosphatase SHP-1 binds to the phosphorylated ITIMs, becomes activated and inhibits the BCR-signal. There are also some positive modulators of the BCR-signal which bind to CD22 (Lyn, Syk, PLCg PI3K, und Grb-2). The role of these molecules in the context of CD22 remains to be elucidated. 1. One main goal of this work was the generation of two new knockin mouse lines. In the first line (CD22-ITIM-KO), the ITIMs of CD22 were to be destroyed. A second line in which CD22 lacks its cytoplasmic tail was to be generated (CD22-Tailless). Both models were supposed to serve the in vivo investigation of the role of the positive modulators of the BCR-signal and the interrelation of CD22 signaling and ligand binding. Cloning of the targeting vectors pCD22-ITIM-KO and pCD22-tailless was completed. Using control vectors, which were also cloned, screening-PCRs for the identification of homologous recombined ES-cell clones were established. C57BL/6 ES-cells were transfected with the targeting constructs, and homologous recombinants were identified with PCR and Southern blot. The introduced mutations were confirmed by sequencing. Following cre/lox-mediated deletion of the selection cassette, fully characterised CD22-ITIM-KO clones were injected into BALB/c-blastocysts. Five chimaeras were obtained, none of which transmitted the mutations through the germline. No homologous recombinants were obtained upon injection of the C57BL/6 targeting constructs into other, non-isogenic ES-cell lines. Finding of the genomic sequence of murine CD22 in a database made it possible to extend pCD22-ITIM-KO by 4 kb with DNA from a 129/ola mouse strain. The new construct was used to transfect 129/ola ES-cells, which are generally known to be kariotypically more stable than C57BL/6 ES-cells. No homologous recombinants were obtained. The now known sequence of the CD22 gene will make it possible to reconstruct pCD22-ITIM-KO based on 129-DNA or to modify and improve the already existing C57BL/6-constructs. 2. To investigate the consequences of the destroyed ITIMs on tyrosine-phosphorylation and SHP-1 association of CD22 in vitro, a CD22-ITIM-KO expression-vector was constructed and sialyl-transferase/CD22-ITIM-KO double-transfectants of the murine plasmocytoma-line J558L were generated. CD22 tyrosine-phosphorylation after BCR-stimulation was completely abolished in CD22-ITIM-KO transfectants. Accordingly, SHP-1 couldnt associate with CD22-ITIM-KO. The results prove the funcionality of the CD22-ITIM-KO construct with respect to ITIM-phosphorylation and binding of SHP-1. Furthermore the results show that the ITIM-tyrosines are also important for the phosphorylation of the non-ITIM-tyrosines. 3. Interaction of CD22 with its ligand a2,6-sialic acid on the surface of the same cell (in cis) plays an important role in cell-cell-interaction and intracellular signal transduction. In this work B-cells on which the ligand binding site of CD22 is not occupied by endogenous a2,6-sialic acid (demasked CD22) were identified by FACS for the first time. 10,5% of all B220+ spleen cells from wild type mice, in contrast to only 4,5% B220+ spleen cells from CD22-/- mice were able to bind exogenous a2,6-sialic acid. This effect is mainly due to the presence or absence of CD22, respectively. Detailed FACS-analyses revealed that cells with demasked CD22 are enriched in the fraction of the transitional B-cells type 2 (T2 cells) and show signs of activation. Accordingly, in vitro activation of B-cells with LPS or IL4 resulted in CD22-dependent demasking. 4. FACS-analyses showed that the marginal zone (MZ) B-cell compartment in CD22-/- mice is strongly reduced (by about 70-80%). Earlier results showing that the immune response against i.p.-injected TI2-antigens is about 2-fold reduced in CD22-/- mice could be confirmed. However, the response was significantly more impaired (3-4-fold) when the same dose of antigen was applied i.v., a situation where preferentially the MZ B-cells of the spleen come in contact with antigen carried along with the blood flow. The known deficiency in TI2-responses in CD22-/- mice is likely due to non-sufficient MZ B-cell numbers in these animals.
|
6 |
Regulatory Mechanisms of the Immune System Downstream of Host and Microbial GlycansZhou, Julie Y. 25 January 2022 (has links)
No description available.
|
Page generated in 0.1044 seconds