• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 26
  • 5
  • 4
  • 4
  • 3
  • 1
  • 1
  • Tagged with
  • 50
  • 50
  • 50
  • 19
  • 14
  • 9
  • 8
  • 8
  • 8
  • 8
  • 7
  • 7
  • 6
  • 6
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Mutational Analysis of the HIV-1 Tat Protein and its Role in Downregulating CD127 on CD8 T Cells

Sugden, Scott M. 15 April 2013 (has links)
HIV Tat protein downregulates surface expression of the interleukin-7 receptor alpha-chain (CD127) on CD8 T cells resulting in impaired T cell proliferation and cytolytic capacity. Once taken up by CD8 T cells, Tat binds directly to the cytoplasmic tail of CD127 inducing receptor internalization and degradation. Given the important roles of CD127 in proper immune function, the Tat/CD127 interactions were characterized and the mechanisms required to induce receptor loss from the surface of CD8 T cells were investigated. Tat deletion mutants were generated each sequentially lacking a region of the protein. CD8 T cells isolated from HIV negative volunteers were exposed to exogenous or intracellular Tat proteins before surface CD127 expression was analyzed by flow cytometry. To characterize Tat/CD127 physical interactions, wild type Tat and Tat mutants were incubated with lysates from a CD127+ Jurkat cell line followed by CD127/Tat co-immunoprecipitation. The effect of Tat on CD127 post-translational modifications was also investigated. Removal of the N-terminus of Tat (aa 1-10 or aa 17-21) prevented Tat from downregulating CD127 and prevented Tat from binding CD127 as assessed by co-immunoprecipitation. Deletion of the basic region (aa 48-59) also prevented Tat from downregulating CD127 but did not prevent Tat from interacting physically as demonstrated by co-immunoprecipitation. Strikingly, endogenously expressed Basic Tat acted as a dominant negative mutant, causing an accumulation of CD127 at the cell surface. These observations suggest that Tat may bind CD127 via its N-terminus to disrupt the normal recycling of the receptor, and then recruit cellular endocytic machinery to the receptor via it’s basic region, to remove the receptor from the cell surface and target it for degradation. Furthermore, Tat encourages the ubiquitination of CD127 by recruiting the cytokine-inducible SH2 containing (CIS) protein to the receptor, possibly leading to accelerated CD127 internalization and proteasomal degradation. I propose a model whereby Tat binds CD127 via its N-terminal region then recruits CIS via its basic region. CIS in turn recruits a cellular E3 ubiquitin ligase to ubiquitin tag the receptor for internalization and proteasome degradation. This research may lead to novel treatments designed to maintain IL-7 signalling and strengthen CD8 T cell function in HIV+ persons.
12

CD8+ T cells in the development of Allograft Vasculopathy and de novo allospecific memory formation

Hart-Matyas, Michael 15 January 2014 (has links)
Long-term survival of cardiac transplant recipients continues to be severely limited by the development of a pathological, chronic rejection process, termed allograft vasculopathy (AV). This remains to be the case despite dramatic improvements in the areas of surgical techniques, pre- and post-operative care, and immunosuppression. To model the clinical setting we used calcineurin inhibitor (CNI) immunosuppression, the cornerstone of post-transplant immunosuppression, in a murine aortic interposition transplant model for our analysis of AV development. This model mimics the presentation of AV in human cardiac transplants through the development of a progressively occlusive neointimal lesion. Our previous work in this model has demonstrated that CD8+, but not CD4+, T cells play a role in neointimal lesion formation. Further investigation also highlighted a specific requirement for either CD8+ T cell-derived IFN-γ or direct cytotoxicity in the development of lesion formation. In the current study we confirmed that CD8+ T cell-derived IFN-γ also leads to the loss of medial smooth muscle cells, an event which inversely correlates with lesion formation. The Fas/FasL direct cytotoxic pathway was also significantly involved in neointimal lesion formation and medial remodeling. This work clarified the pathways utilized by CD8+ T cells in their role as mediators of AV development. Recognizing the threat that CD8+ T cells pose to cardiac transplant recipients in the presence of CNI immunosuppression, and a growing concern with the presence of anti-donor memory T cells in transplant recipients, we next explored the development of memory CD8+ T cells in the presence of CNI immunosuppression. We first established that memory CD8+ T cells could not develop when CNI immunosuppression was initiated immediately post-challenge. Next, we hypothesized that the clinical practice of CNI delay post-transplant would permit the development of de novo memory CD8+ T cells. Immediate and early initiation was sufficient to prevent the development of de novo memory CD8+ T cells. However, later delay to within a clinically practiced timeframe did permit the development of de novo memory CD8+ T cells. Our analysis revealed that this population demonstrated equivalent functionality to de novo memory CD8+ T cells generated in the absence of CNI immunosuppression.
13

Mutational Analysis of the HIV-1 Tat Protein and its Role in Downregulating CD127 on CD8 T Cells

Sugden, Scott M. January 2013 (has links)
HIV Tat protein downregulates surface expression of the interleukin-7 receptor alpha-chain (CD127) on CD8 T cells resulting in impaired T cell proliferation and cytolytic capacity. Once taken up by CD8 T cells, Tat binds directly to the cytoplasmic tail of CD127 inducing receptor internalization and degradation. Given the important roles of CD127 in proper immune function, the Tat/CD127 interactions were characterized and the mechanisms required to induce receptor loss from the surface of CD8 T cells were investigated. Tat deletion mutants were generated each sequentially lacking a region of the protein. CD8 T cells isolated from HIV negative volunteers were exposed to exogenous or intracellular Tat proteins before surface CD127 expression was analyzed by flow cytometry. To characterize Tat/CD127 physical interactions, wild type Tat and Tat mutants were incubated with lysates from a CD127+ Jurkat cell line followed by CD127/Tat co-immunoprecipitation. The effect of Tat on CD127 post-translational modifications was also investigated. Removal of the N-terminus of Tat (aa 1-10 or aa 17-21) prevented Tat from downregulating CD127 and prevented Tat from binding CD127 as assessed by co-immunoprecipitation. Deletion of the basic region (aa 48-59) also prevented Tat from downregulating CD127 but did not prevent Tat from interacting physically as demonstrated by co-immunoprecipitation. Strikingly, endogenously expressed Basic Tat acted as a dominant negative mutant, causing an accumulation of CD127 at the cell surface. These observations suggest that Tat may bind CD127 via its N-terminus to disrupt the normal recycling of the receptor, and then recruit cellular endocytic machinery to the receptor via it’s basic region, to remove the receptor from the cell surface and target it for degradation. Furthermore, Tat encourages the ubiquitination of CD127 by recruiting the cytokine-inducible SH2 containing (CIS) protein to the receptor, possibly leading to accelerated CD127 internalization and proteasomal degradation. I propose a model whereby Tat binds CD127 via its N-terminal region then recruits CIS via its basic region. CIS in turn recruits a cellular E3 ubiquitin ligase to ubiquitin tag the receptor for internalization and proteasome degradation. This research may lead to novel treatments designed to maintain IL-7 signalling and strengthen CD8 T cell function in HIV+ persons.
14

Host Factors That Influence Coxsackievirus B3 Replication and Pathogenensis

Dhalech, Adeeba Haroon 04 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Enteric viruses are infectious human pathogens that initiate infection in the gastrointestinal tract. They follow a fecal-oral route of transmission and are spread by contamination of food, water, or contact between individuals. Furthermore, enteric viruses also cause significant morbidity, mortality, and economic burdens yearly. Coxsackievirus (CV) is commonly isolated among enteric viruses and is an etiological agent of hand, foot, and mouth disease, hemorrhagic conjunctivitis, and myocarditis. The virus predominantly infects infants and young children and accounts for 11% of the fatality rate in neonates. Despite CV’s impact on human health, there are no treatments or vaccines for CV infections. Using a mouse model to study a key CV, Coxsackievirus B3 (CVB3), our laboratory has found two critical factors that impact CVB3 replication and pathogenesis. First, we have demonstrated that intestinal bacteria enhance intestinal CVB3 replication. We found that certain specific bacteria (Salmonella enterica) and its cell wall components, like lipopolysaccharides (LPS), enhanced CVB3 stability and infectivity in vitro. Additionally, we found that particular constituents of LPS are required for stability to occur. These data suggest that specific bacteria may be integral in maintaining CVB3 infectivity in the intestine. Besides virus-microbiome interaction, CVB3 is also impacted by sex hormones. Using castrated mice models, we observed a sex bias to CVB3 infection, with male mice succumbing to CVB3-induced disease at an increased rate compared to female mice. Our data suggest that testosterone, a predominant male sex hormone, enhanced CVB3 intestinal replication and viral dissemination to organs in male and female mice, but lethality only in male mice. Moreover, testosterone also affected the immune response by reducing the activation of the CD8+ T cells. CD8+ T cells are required to clear the viral infection and are integral in vaccine development. In contrast, we found an enhanced CD8+ T cell response in female mice to CVB3 infection, suggesting a sex-dependent T cell response that may underlie the sex bias in disease. Overall, these data represent an essential advancement in the CV field and will help develop future therapeutics and aid in vaccine design to limit CV infections.
15

Mechanisms of CD8+ T Cell Mediated Virus Inhibition in HIV-1 Virus Controllers

Payne, Tamika Leola January 2014 (has links)
<p>CD8+ T cells are associated with long term control of virus replication to low or undetectable levels in a population of HIV+ therapy-naïve individuals known as virus controllers (VCs; <5000 RNA copies/ml and CD4+ lymphocyte counts >400 cells/µl). These subjects' ability to control viremia in the absence of therapy makes them the gold standard for the type of CD8+ T-cell response that should be induced with a vaccine. Studying the regulation of CD8+ T cells responses in these VCs provides the opportunity to discover mechanisms of durable control of HIV-1. Previous research has shown that the CD8+ T cell population in VCs is heterogeneous in its ability to inhibit virus replication and distinct T cells are responsible for virus inhibition. Further defining both the functional properties and regulation of the specific features of the select CD8+ T cells responsible for potent control of viremia the in VCs would enable better evaluation of T cell-directed vaccine strategies and may inform the design of new therapies. </p><p>Here we discuss the progress made in elucidating the features and regulation of CD8+ T cell response in virus controllers. We first detail the development of assays to quantify CD8+ T cells' ability to inhibit virus replication. This includes the use of a multi-clade HIV-1 panel which can subsequently be used as a tool for evaluation of T cell directed vaccines. We used these assays to evaluate the CD8+ response among cohorts of HIV-1 seronegative, HIV-1 acutely infected, and HIV-1 chronically infected (both VC and chronic viremic) patients. Contact and soluble CD8+ T cell virus inhibition assays (VIAs) are able to distinguish these patient groups based on the presence and magnitude of the responses. When employed in conjunction with peptide stimulation, the soluble assay reveals peptide stimulation induces CD8+ T cell responses with a prevalence of Gag p24 and Nef specificity among the virus controllers tested. Given this prevalence, we aimed to determine the gene expression profile of Gag p24-, Nef-, and unstimulated CD8+ T cells. RNA was isolated from CD8+ T-cells from two virus controllers with strong virus inhibition and one seronegative donor after a 5.5 hour stimulation period then analyzed using the Illumina Human BeadChip platform (Duke Center for Human Genome Variation). Analysis revealed that 565 (242 Nef and 323 Gag) genes were differentially expressed in CD8+ T-cells that were able to inhibit virus replication compared to those that could not. We compared the differentially expressed genes to published data sets from other CD8+ T-cell effector function experiments focusing our analysis on the most recurring genes with immunological, gene regulatory, apoptotic or unknown functions. The most commonly identified gene in these studies was TNFRSF9. Using PCR in a larger cohort of virus controllers we confirmed the up-regulation of TNFRSF9 in Gag p24 and Nef-specific CD8+ T cell mediated virus inhibition. We also observed increase in the mRNA encoding antiviral cytokines macrophage inflammatory proteins (MIP-1&alpha;, MIP-1&alpha;P, MIP-1&beta;), interferon gamma (IFN-&gamma;), granulocyte-macrophage colony-stimulating factor (GM-CSF), and recently identified lymphotactin (XCL1). </p><p>Our previous work suggests the CD8+ T-cell response to HIV-1 can be regulated at the level of gene regulation. Because RNA abundance is modulated by transcription of new mRNAs and decay of new and existing RNA we aimed to evaluate the net rate of transcription and mRNA decay for the cytokines we identified as differentially regulated. To estimate rate of mRNA synthesis and decay, we stimulated isolated CD8+ T-cells with Gag p24 and Nef peptides adding 4-thiouridine (4SU) during the final hour of stimulation, allowing for separation of RNA made during the final hour of stimulation. Subsequent PCR of RNA isolated from these cells, allowed us to determine how much mRNA was made for our genes of interest during the final hour which we used to calculate rate of transcription. To assess if stimulation caused a change in RNA stability, we calculated the decay rates of these mRNA over time. In Gag p24 and Nef stimulated T cells , the abundance of the mRNA of many of the cytokines examined was dependent on changes in both transcription and mRNA decay with evidence for potential differences in the regulation of mRNA between Nef and Gag specific CD8+ T cells. The results were highly reproducible in that in one subject that was measured in three independent experiments the results were concordant. </p><p>This data suggests that mRNA stability, in addition to transcription, is key in regulating the direct anti-HIV-1 function of antigen-speci&#64257;c memory CD8+ T cells by enabling rapid recall of anti-HIV-1 effector functions, namely the production and increased stability of antiviral cytokines. We have started to uncover the mechanisms employed by CD8+ T cell subsets with antigen-speci&#64257;c anti-HIV-1 activity, in turn, enhancing our ability to inhibit virus replication by informing both cure strategies and HIV-1 vaccine designs that aim to reduce transmission and can aid in blocking HIV-1 acquisition.</p> / Dissertation
16

Systematic analysis of enhancer and promoter interactions

He, Bing 01 December 2015 (has links)
Transcriptional enhancers represent the primary basis for differential gene expression. These elements regulate cell type specificity, development, and evolution, with many human diseases resulting from altered enhancer activity. To date, a key gap in our knowledge is how enhancers select specific promoters for activation. To fill this gap, in this thesis, I first developed an Integrated Method for Predicting Enhancer Targets (IM-PET). Leveraging abundant “omics” data, I devised and characterized multiple genomic features for distinguishing true enhancer-promoter (EP) pairs from non-interacting pairs. I integrated these features into a probabilistic predictor for EP interactions. Multiple validation experiments demonstrated a significant improvement over extent state-of-the-art approaches. Systematic analyses of EP interactions across twelve human cell types reveals global features of EP interactions. Second, we used a well-established viral infection model to map the dynamic changes of enhancers and super-enhancers during the CD8+ T cell responses. Our analysis illustrated the complexity and dynamics of the underlying EP interactome during cell differentiation. Taking advantage of the predicted EP interactions, we constructed stage-specific transcriptional regulatory networks, which is critical for understanding the regulatory mechanism during CD8+ T cell differentiation. Third, recent progress in mapping technologies for chromatin interactions has led to a rapid increase in this type of interaction data. However, there is a lack of a comprehensive depository for chromatin interactions identified by all major technologies. To address this problem, we have developed the 4DGenome database through comprehensive literature curation of experimentally derived interactions. We envision a wide range of investigations will benefit from this carefully curated database.
17

Assessing T cell responses in respiratory syncytial virus infection and vaccination

Schmidt, Megan Elizabeth 01 May 2019 (has links)
Respiratory syncytial virus (RSV) is the leading cause of lower respiratory tract infection and hospitalization in infants and young children, but no vaccine is currently available. CD4 and CD8 T cells are critical for mediating viral clearance but also contribute to immunopathology following an acute RSV infection. However, few RSV-derived CD4 and CD8 T cell epitopes in the commonly used C57BL/6 mouse strain have been described. I utilized an overlapping peptide library spanning the entire RSV proteome and intracellular cytokine staining for interferon-gamma (IFN-γ) to identify novel CD4 and CD8 T cell epitopes in C57BL/6 mice. I discovered and characterized two novel CD4 T cell epitopes and three novel CD8 T cell epitopes located within multiple RSV proteins. Overall, the novel RSV-derived CD4 and CD8 T cell epitopes identified in C57BL/6 mice will aid in future studies of RSV-specific T cell responses. While CD8 T cells are important for viral clearance following an acute RSV infection, the contribution of memory CD8 T cells in providing protection against reinfection with RSV remains unclear. I used a prime-boost immunization approach to induce robust, systemic memory CD8 T cell responses in the absence of RSV-specific CD4 T cells and antibodies. I determined that high magnitude, systemic memory CD8 T cell responses efficiently reduced lung viral titers following RSV infection, but unexpectedly did so at the expense of severe and fatal immunopathology. The exacerbated disease was mediated by the rapid and excessive production of IFN-γ by memory CD8 T cells in the lung and airways. In contrast, I found that local immunization generated a large population of tissue-resident memory CD8 T cells in the lung that efficiently reduced lung viral titers in the absence of exacerbated disease. Additionally, I observed that pre-existing RSV-specific neutralizing antibodies prevented the immunopathology induced by high magnitude, systemic memory CD8 T cell responses following RSV infection. Prophylactic treatment with neutralizing antibodies against RSV efficiently restricted early virus replication, which resulted in a significant decrease in lung IFN-γ levels, memory CD8 T cell activation, and the frequency of IFN-γ producing CD8 T cells. Thus, my results demonstrate that high magnitude, systemic memory CD8 T cells induce lethal immunopathology following RSV infection, which can be prevented by pre-existing RSV-specific neutralizing antibodies. Overall, my results have important implications for the development of future RSV vaccines. The development of a live-attenuated vaccine for RSV has been prevented by the inability to properly balance attenuation with immunogenicity and efficacy. Recently, a recombinant RSV strain lacking the gene that encodes the matrix (M) protein (RSV M-null) was developed. As the M protein is required for virion assembly following infection of a host cell, RSV M-null induces a single-cycle infection. I evaluated RSV M-null as a potential live-attenuated vaccine candidate by determining its pathogenicity, immunogenicity, and protective capacity in BALB/c mice compared to its recombinant wild-type control virus (RSV recWT). RSV M-null was sufficiently attenuated, as significantly reduced lung viral titers, weight loss, and pulmonary dysfunction were observed compared to mice infected with RSV recWT. Surprisingly, despite its attenuation, I found that RSV M-null infection induced effector T cell, germinal center B cell, serum antibody, and memory T cell responses of similar magnitude to that elicited by infection with RSV recWT. Importantly, RSV M-null immunization provided protection against secondary viral challenge by reducing lung viral titers as efficiently as immunization with RSV recWT. Overall, my results indicate that RSV M-null combines attenuation with high immunogenicity and efficacy and represents a promising novel live-attenuated RSV vaccine candidate.
18

Regulation of memory CD8 T cell differentiation

Pham, Nhat-Long Lam 01 May 2011 (has links)
Antigen-specific CD8 T cells play a critical role in protecting the host from infection by intracellular pathogens including viruses, bacteria and parasites. During the course of an infection, antigen-specific CD8 T cells undergo proliferative expansion to increase in number, which is followed by contraction and generation of a stable pool of long-lived memory cells. Importantly, memory CD8 T cells provide enhanced resistance to re-infection by the same pathogen. Moreover, the number of memory CD8 T cells correlates strongly with the level of protection against re-infection. Therefore, vaccines designed to promote cellular immunity should logically focus on achieving sufficiently high number of these memory cells for protection. Most current vaccines have relied on inducing antibodies to protect the host by neutralizing pathogens or blocking pathogen entry into the cells. However, there is a recognized need to design vaccines that also stimulate a strong CD8 T cell component of the adaptive immune response in addition to antibodies. Importantly, inflammatory cytokines induced by infection or vaccination with adjuvant act directly or indirectly on CD8 T cells to modulate their expansion, contraction and acquisition of memory characteristics. Thus, an understanding of how inflammatory cytokines regulate CD8 T cell memory differentiation may help guide the strategies for rational vaccine design. My studies examine the roles of inflammatory cytokines in regulating CD8 T cell memory differentiation. Specifically, my studies investigate the timing of inflammatory cytokine exposure and the role of type I IFNs and IL-12 in regulating effector/memory CD8 T cell differentiation, and exploiting the cross-presentation pathway to rapidly generate protective CD8 T cell immunity. Specifically, my results indicate that (i) encounter with inflammatory cytokines during the rapid proliferative phase deflects CD8 T cell differentiation away from memory towards a sustained effector program, (ii) that direct signaling by either type I IFN or IL-12 to the responding CD8 T cells promotes maximal expansion, but neither of these cytokines is essential to regulate the effector/memory differentiation program, and (iii) cross-priming with both cell-associated antigen and antigen-coated, biodegradable microspheres, accelerates CD8 T cell memory development that can be exploited to rapidly generate protective CD8 T cell immunity.
19

Pulmonary dendritic cells and CD8 T cells facilitate protection following influenza A virus vaccination and infection

Hemann, Emily Ann 01 December 2014 (has links)
The severe disease associated with seasonal epidemics of influenza A virus (IAV), as well as pandemic outbreaks, have highlighted the necessity for novel, broadly cross-reactive vaccination and therapeutic strategies against IAV. Our studies have focused on the contribution of IAV-specific CD8 T cells to mediating protection following IAV vaccination and infection as IAV-specific CD8 T cells are required for clearance of IAV. Further, IAV-specific CD8 T cells are typically cross-protective as they are generally directed at highly conserved areas of IAV. Recently, influenza virus-like particles (VLPs) have been developed from recombinant baculoviruses containing influenza proteins hemagglutinin (HA) and/or neuraminidase (NA) on the surface and matrix (M1) in the VLP core. Influenza VLPs induce potent antibody responses and have been shown to provide protection from morbidity and mortality during lethal homo- and hetero-subtypic IAV challenge. This suggests that conserved, VLP-induced CD8 T cell responses may also contribute to the overall protective ability of VLPs. However, whether influenza VLPs can induce influenza-specific CD8 T cell responses and if these T cells are protective during IAV challenge remains unknown. Here, I demonstrate that a single, intranasal vaccination with VLPs containing HA and M1 leads to a significant increase in HA533-specific CD8 T cells in the lungs and lung-draining lymph nodes. Our results also indicate that HA533-specific CD8 T cells primed by influenza VLP vaccination are significantly increased in the lungs following lethal IAV challenge. These VLP-induced memory CD8 T cells are critical in providing protection from lethality following subsequent challenge infections, as depletion of CD8 T cells leads to increased mortality, even when total, but not VLP-induced memory, CD8 T cell numbers have been allowed to recover prior to lethal dose IAV challenge. In addition, my studies also importantly demonstrate that these VLP-induced, HA533-specific CD8 T cells aid in protection from high-dose, heterosubtypic IAV infections where CD8 T cell epitopes are conserved, but the targets of neutralizing antibodies have been destroyed. This dissertation further elucidates the requirements for the regulation of the IAV-specific CD8 T cell response in the periphery (i.e. lung) by pDC and CD8α+ DC. Our studies have previously demonstrated that pDC or CD8α+ DC must present viral antigen in the context of MHC class I along with trans-presentation of IL-15 to effector, IAV-specific CD8 T cells in the lungs to protect the T cells from apoptosis and allow generation of the full magnitude CD8 T cell response needed to clear IAV infection. Herein, I demonstrate that in addition to antigen presentation and IL-15, costimulatory molecules on the surface of pDC and CD8α+ DC are also required. However, the specific costimulatory molecules required depends upon both the mouse strain utilized for IAV infection as well as DC subset. In addition to costimulatory molecules, I also demonstrate that the requirement for pDC and CD8α+ DC to be infected differs in order for them to participate in this pulmonary rescue of the IAV-specific CD8 T cell response. While CD8α+ DC are able to efficiently cross-present exogenous antigen, pDC must be directly infected and utilize the endogenous, direct antigen presentation pathway to present viral antigen to IAV-specific CD8 T cells in the lungs during IAV infection. These data suggest there are distinct differences between pDC and CD8α+ DC in their mechanism of regulating the pulmonary IAV-specific CD8 T cell response, which had not been previously appreciated. Together, the results presented herein further detail the mechanism of regulation of effector IAV-specific CD8 T cells by DC as well as the contribution of IAV-specific CD8 T cells to a novel, IAV VLP vaccination strategy. These findings highlight the importance of IAV-specific CD8 T cells in mediating protection following IAV vaccination and infection.
20

Characterization of the Mamu-A*01-Restricted CD8-Positive T Lymphocyte Immunodominance Hierarchy in Simian Immunodeficiency Virus-Infected Rhesus Monkeys

Osuna-Gutierrez, Christa Elyse 03 April 2013 (has links)
\(CD8^+\) cytotoxic T lymphocytes (CTLs) play a critical role in controlling human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) replication. The CTL responses that are thought to be the most protective against HIV and SIV are those that are of high frequency, recognize multiple epitopes, and perform multiple antiviral functions. Therefore, current vaccines aim to elicit CTLs possessing these characteristics. However, the phenomenon of immunodominance likely limits the potential of vaccines from generating such CTL responses by restricting the breadth of epitopes recognized by CTLs and the frequency and functionality of these CTL responses. In this dissertation, we explored the relationship between SIV epitope dominance and the functionality of the epitope-specific CTL populations. We also examined factors that contribute to the development of SIV epitope immunodominance hierarchies. We initially investigated the relationship between SIV epitope dominance and the antiviral functionality of the epitope-specific CTL populations in rhesus monkeys. We performed a gene expression analysis in dominant and subdominant epitope-specific CTLs during the acute phase of SIV infection and observed differential expression of a number of genes during this time. Subsequent in vitro functional studies of these epitope-specific CTL populations during the chronic phase of infection confirmed the presence of differences in maturation phenotype and functional capacity of dominant and subdominant epitope-specific CTLs. These studies demonstrate a relationship between epitope dominance and antiviral functionality of epitopespecific CTLs and suggest that dominant and subdominant epitope-specific CTLs may differ in their protective role against HIV acquisition and replication. This has important implications for vaccine design. In subsequent studies, we investigated the contribution of the binding of the peptide:MHC (pMHC) complex to the T cell receptor (TCR) in the development of immunodominance hierarchies. Using surface plasmon resonance, we measured the kinetics and the affinity of the interactions between dominant and subdominant epitope pMHC complexes with their respective TCRs. We found that epitope dominance was associated with higher affinities of pMHC:TCR binding. These findings indicate a molecular interaction that may be manipulated in vaccine-induced CTL responses to enhance their frequency and functional capacity.

Page generated in 0.0721 seconds