• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Therapeutic Implications of the 4-1BB Costimulatory Pathway on CD8 T Cells during Chronic HIV Infection

Wang, Chao 26 July 2013 (has links)
A hallmark of chronic human immunodeficiency virus (HIV) infection is the impairment of CD8 T cell survival and effector functions, which likely contributes to HIV pathogenesis. A number of factors could be attributed to this impairment, including the declining number of CD4 T cells, progressive destruction of secondary lymphoid tissues and an increasingly inhibitory environment. As highly active antiretroviral therapy shows limited efficacy in improving CD8 T cell functions, this thesis explores the therapeutic application of costimulatory molecules in directly stimulating non-functional HIV-specific CD8 T cells and ultimately their relevance to the control of chronic HIV infection. Costimulatory molecules are adjuvants for functional activation of T cells that act in concert with the antigen-specific signal. The Tumor Necrosis Factor (TNF) family member, 4-1BBL, emerges as the most effective costimulatory molecule in the antigen-specific expansion of human memory CD8 T cells as compared to the related TNF family members CD70 and LIGHT. As well, 4-1BBL improves the cytolytic function of T lymphocytes on a per cell basis. Furthermore, 4-1BBL is identified as a key component in the therapeutic rescue of CD8 T cell function and its effect is at least partially dependent on its signaling adaptor TNF receptor associated factor 1 (TRAF1), both in vitro and in vivo. This thesis also identifies the loss of TRAF1 as a new mechanism of immune dysregulation of HIV-specific CD8 T cells during the chronic phase of HIV infection and offers a means to correct it. The loss of TRAF1 has functional relevance in HIV suppression and HIV-specific CD8 T cell responses. Finally, a combination therapy involving agonistic anti-4-1BB antibody is shown to be successful in a proof of concept treatment of chronic lymphocytic chroriomeningitis virus (LCMV) infection in mice, resulting in sustained reduction in viral load. A new model of HIV-specific CD8 T cell dysfunction is constructed based on these findings.
2

Therapeutic Implications of the 4-1BB Costimulatory Pathway on CD8 T Cells during Chronic HIV Infection

Wang, Chao 26 July 2013 (has links)
A hallmark of chronic human immunodeficiency virus (HIV) infection is the impairment of CD8 T cell survival and effector functions, which likely contributes to HIV pathogenesis. A number of factors could be attributed to this impairment, including the declining number of CD4 T cells, progressive destruction of secondary lymphoid tissues and an increasingly inhibitory environment. As highly active antiretroviral therapy shows limited efficacy in improving CD8 T cell functions, this thesis explores the therapeutic application of costimulatory molecules in directly stimulating non-functional HIV-specific CD8 T cells and ultimately their relevance to the control of chronic HIV infection. Costimulatory molecules are adjuvants for functional activation of T cells that act in concert with the antigen-specific signal. The Tumor Necrosis Factor (TNF) family member, 4-1BBL, emerges as the most effective costimulatory molecule in the antigen-specific expansion of human memory CD8 T cells as compared to the related TNF family members CD70 and LIGHT. As well, 4-1BBL improves the cytolytic function of T lymphocytes on a per cell basis. Furthermore, 4-1BBL is identified as a key component in the therapeutic rescue of CD8 T cell function and its effect is at least partially dependent on its signaling adaptor TNF receptor associated factor 1 (TRAF1), both in vitro and in vivo. This thesis also identifies the loss of TRAF1 as a new mechanism of immune dysregulation of HIV-specific CD8 T cells during the chronic phase of HIV infection and offers a means to correct it. The loss of TRAF1 has functional relevance in HIV suppression and HIV-specific CD8 T cell responses. Finally, a combination therapy involving agonistic anti-4-1BB antibody is shown to be successful in a proof of concept treatment of chronic lymphocytic chroriomeningitis virus (LCMV) infection in mice, resulting in sustained reduction in viral load. A new model of HIV-specific CD8 T cell dysfunction is constructed based on these findings.

Page generated in 0.0871 seconds